Reaction participants Show >> << Hide
- Name help_outline (15Z)-tetracosenoyl-CoA Identifier CHEBI:74128 Charge -4 Formula C45H76N7O17P3S InChIKeyhelp_outline QHZAQVTVYPHLKK-YVBAAGQKSA-J SMILEShelp_outline CCCCCCCC\C=C/CCCCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sphinganine Identifier CHEBI:57817 Charge 1 Formula C18H40NO2 InChIKeyhelp_outline OTKJDMGTUTTYMP-ZWKOTPCHSA-O SMILEShelp_outline CCCCCCCCCCCCCCC[C@@H](O)[C@@H]([NH3+])CO 2D coordinates Mol file for the small molecule Search links Involved in 36 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-(15Z-tetracosenoyl)-sphinganine Identifier CHEBI:74130 Charge 0 Formula C42H83NO3 InChIKeyhelp_outline YUULKFVZRXQHPM-ATHUGRIKSA-N SMILEShelp_outline CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(=O)CCCCCCCCCCCCC\C=C/CCCCCCCC 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:36667 | RHEA:36668 | RHEA:36669 | RHEA:36670 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
A fluorescent assay for ceramide synthase activity.
Kim H.J., Qiao Q., Toop H.D., Morris J.C., Don A.S.
The sphingolipids are a diverse family of lipids with important roles in membrane compartmentalization, intracellular signaling, and cell-cell recognition. The central sphingolipid metabolite is ceramide, formed by the transfer of a variable length fatty acid from coenzyme A to a sphingoid base, g ... >> More
The sphingolipids are a diverse family of lipids with important roles in membrane compartmentalization, intracellular signaling, and cell-cell recognition. The central sphingolipid metabolite is ceramide, formed by the transfer of a variable length fatty acid from coenzyme A to a sphingoid base, generally sphingosine or dihydrosphingosine (sphinganine) in mammals. This reaction is catalyzed by a family of six ceramide synthases (CerS1-6). CerS activity is usually assayed using either radioactive substrates or LC-MS/MS. We describe a CerS assay with fluorescent, NBD-labeled sphinganine as substrate. The assay is readily able to detect endogenous CerS activity when using amounts of cell or tissue homogenate protein that are lower than those reported for the radioactive assay, and the Michaelis-Menten constant was essentially the same for NBD-sphinganine and unlabeled sphinganine, indicating that NBD-sphinganine is a good substrate for these enzymes. Using our assay, we confirm that the new clinical immunosuppressant FTY720 is a competitive inhibitor of CerS activity, and show that inhibition requires the compound's lipid tail and amine headgroup. In summary, we describe a fluorescent assay for CerS activity that circumvents the need to use radioactive substrates, while being more accessible and cheaper than LC-MS based assays. << Less
J. Lipid Res. 53:1701-1707(2012) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate.
Laviad E.L., Albee L., Pankova-Kholmyansky I., Epstein S., Park H., Merrill A.H. Jr., Futerman A.H.
Ceramide is an important lipid signaling molecule and a key intermediate in sphingolipid biosynthesis. Recent studies have implied a previously unappreciated role for the ceramide N-acyl chain length, inasmuch as ceramides containing specific fatty acids appear to play defined roles in cell physio ... >> More
Ceramide is an important lipid signaling molecule and a key intermediate in sphingolipid biosynthesis. Recent studies have implied a previously unappreciated role for the ceramide N-acyl chain length, inasmuch as ceramides containing specific fatty acids appear to play defined roles in cell physiology. The discovery of a family of mammalian ceramide synthases (CerS), each of which utilizes a restricted subset of acyl-CoAs for ceramide synthesis, strengthens this notion. We now report the characterization of mammalian CerS2. qPCR analysis reveals that CerS2 mRNA is found at the highest level of all CerS and has the broadest tissue distribution. CerS2 has a remarkable acyl-CoA specificity, showing no activity using C16:0-CoA and very low activity using C18:0, rather utilizing longer acyl-chain CoAs (C20-C26) for ceramide synthesis. There is a good correlation between CerS2 mRNA levels and levels of ceramide and sphingomyelin containing long acyl chains, at least in tissues where CerS2 mRNA is expressed at high levels. Interestingly, the activity of CerS2 can be regulated by another bioactive sphingolipid, sphingosine 1-phosphate (S1P), via interaction of S1P with two residues that are part of an S1P receptor-like motif found only in CerS2. These findings provide insight into the biochemical basis for the ceramide N-acyl chain composition of cells, and also reveal a novel and potentially important interplay between two bioactive sphingolipids that could be relevant to the regulation of sphingolipid metabolism and the opposing functions that these lipids play in signaling pathways. << Less
J. Biol. Chem. 283:5677-5684(2008) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.