Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (S)-1-pyrroline-5-carboxylate Identifier CHEBI:17388 Charge -1 Formula C5H6NO2 InChIKeyhelp_outline DWAKNKKXGALPNW-BYPYZUCNSA-M SMILEShelp_outline [O-]C(=O)[C@@H]1CCC=N1 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline malonyl-CoA Identifier CHEBI:57384 Charge -5 Formula C24H33N7O19P3S InChIKeyhelp_outline LTYOQGRJFJAKNA-DVVLENMVSA-I SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 213 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2S,5S)-5-carboxymethylproline Identifier CHEBI:73962 Charge -1 Formula C7H10NO4 InChIKeyhelp_outline LIZWYFXJOOUDNV-WHFBIAKZSA-M SMILEShelp_outline [O-]C(=O)C[C@@H]1CC[C@H]([NH2+]1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,006 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:36663 | RHEA:36664 | RHEA:36665 | RHEA:36666 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Carboxymethylproline synthase from Pectobacterium carotorova: a multifaceted member of the crotonase superfamily.
Gerratana B., Arnett S.O., Stapon A., Townsend C.A.
The simplest carbapenem antibiotic, (5R)-carbapen-2-em-3-carboxylic acid, is biosynthesized from primary metabolites in Pectobacterium carotorova by the action of three enzymes, carboxymethylproline synthase (hereafter named CarB), carbapenam synthetase, and carbapenem synthase. CarB, a member of ... >> More
The simplest carbapenem antibiotic, (5R)-carbapen-2-em-3-carboxylic acid, is biosynthesized from primary metabolites in Pectobacterium carotorova by the action of three enzymes, carboxymethylproline synthase (hereafter named CarB), carbapenam synthetase, and carbapenem synthase. CarB, a member of the crotonase superfamily, catalyzes the formation of (2S,5S)-5-carboxymethylproline from malonyl-CoA and l-pyrroline-5-carboxylate. In this study we show that, in addition, CarB catalyzes the independent decarboxylation of malonyl-CoA and methylmalonyl-CoA and the hydrolysis of CoA esters such as acetyl-CoA and propionyl-CoA. The steady-state rate constants for these reactions are reported. We have identified the intermediates in the CarB reactions with l-pyrroline-5-carboxylate and malonyl-CoA or methylmalonyl-CoA as the CoA esters of (2S,5S)-5-carboxymethylproline and (2S,5S)-6-methyl-5-carboxymethylproline, respectively. The data provided indicate that these intermediates partition between completing turnover and dissociating from the enzyme. On the basis of the steady-state rate constants measured for the CarB-catalyzed hydrolysis of synthetic (2S,5S)-5-carboxymethylprolyl-CoA and for the CarB reaction with malonyl-CoA and l-pyrroline-5-carboxylate, we have calculated the rate constants for each step of these reactions. The results identify CarB as a particularly interesting member of the crotonase superfamily that combines in one net reaction three activities of this superfamily, decarboxylation, C-C bond formation, and CoA ester hydrolysis. << Less
-
Carboxymethylproline synthase (CarB), an unusual carbon-carbon bond-forming enzyme of the crotonase superfamily involved in carbapenem biosynthesis.
Sleeman M.C., Schofield C.J.
Carboxymethylproline synthase (CarB) catalyzes the committed step in the biosynthesis of (R)-1-carbapen-2-em-3-carboxylate, the simplest member of the carbapenem family of beta-lactam antibiotics, some of which are used clinically. CarB displays sequence homology with members of the crotonase fami ... >> More
Carboxymethylproline synthase (CarB) catalyzes the committed step in the biosynthesis of (R)-1-carbapen-2-em-3-carboxylate, the simplest member of the carbapenem family of beta-lactam antibiotics, some of which are used clinically. CarB displays sequence homology with members of the crotonase family including enoyl-CoA hydratase (crotonase) and methylmalonyl-CoA decarboxylase. The CarB reaction has been proposed to comprise condensation of acetyl coenzyme A (AcCoA) and glutamate semi-aldehyde to give (2S,5S)-carboxymethylproline ((2S,5S)-CMP). (2S,5S)-CMP is then cyclized in an ATP-driven reaction catalyzed by CarA to give a carbapenam, which is subsequently epimerized and desaturated to give a carbapenem in a CarC-mediated reaction. Here we report the purification of recombinant CarB and that it exists predominantly in a trimeric form as do other members of the crotonase family. AcCoA was not found to be a substrate for CarB. Instead malonyl-CoA was found to be a substrate, efficiently producing (2S,5S)-CMP in the presence of glutamate semi-aldehyde. In the absence of glutamate semi-aldehyde, mass spectrometric analysis indicated that CarB catalyzed the decarboxylation of malonyl-CoA to AcCoA. The reactions of CarB, CarA, and CarC were coupled in vitro demonstrating the viability of malonyl-CoA as a carbapenem precursor. CarB was also shown to accept methylmalonyl CoA as a substrate to form 6-methyl-(2S,5S)CMP, which in turn is a substrate for CarA. The implications of the results for the biosynthesis of both carbapenem-3-carboxylate and C-2/C-6-substituted carbapenems, such as thienamycin, are discussed. << Less