Enzymes
UniProtKB help_outline | 1,326 proteins |
Reaction participants Show >> << Hide
- Name help_outline (9Z,12Z)-octadecadienoyl-CoA Identifier CHEBI:57383 Charge -4 Formula C39H62N7O17P3S InChIKeyhelp_outline YECLLIMZHNYFCK-RRNJGNTNSA-J SMILEShelp_outline CCCCC\C=C/C\C=C/CCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 41 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline malonyl-CoA Identifier CHEBI:57384 Charge -5 Formula C24H33N7O19P3S InChIKeyhelp_outline LTYOQGRJFJAKNA-DVVLENMVSA-I SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 213 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (11Z,14Z)-3-oxoicosa-11,14-dienoyl-CoA Identifier CHEBI:74012 Charge -4 Formula C41H64N7O18P3S InChIKeyhelp_outline PUWDUOCPCWFEFG-YGYQDCEASA-J SMILEShelp_outline CCCCC\C=C/C\C=C/CCCCCCCC(=O)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,006 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:36503 | RHEA:36504 | RHEA:36505 | RHEA:36506 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis.
Ohno Y., Suto S., Yamanaka M., Mizutani Y., Mitsutake S., Igarashi Y., Sassa T., Kihara A.
Very long-chain fatty acids (VLCFAs) exert a variety of cellular functions and are associated with numerous diseases. However, the precise pathway behind their elongation has remained elusive. Moreover, few regulatory mechanisms for VLCFAs synthesis have been identified. Elongases catalyze the fir ... >> More
Very long-chain fatty acids (VLCFAs) exert a variety of cellular functions and are associated with numerous diseases. However, the precise pathway behind their elongation has remained elusive. Moreover, few regulatory mechanisms for VLCFAs synthesis have been identified. Elongases catalyze the first of four steps in the VLCFA elongation cycle; mammals have seven elongases (ELOVL1-7). In the present study, we determined the precise substrate specificities of all the ELOVLs by in vitro analyses. Particularly notable was the high activity exhibited by ELOVL1 toward saturated and monounsaturated C20- and C22-CoAs, and that it was essential for the production of C24 sphingolipids, which are unique in their capacity to interdigitate within the membrane as a result of their long chain length. We further established that ELOVL1 activity is regulated with the ceramide synthase CERS2, an enzyme essential for C24 sphingolipid synthesis. This regulation may ensure that the production of C24-CoA by elongation is coordinated with its utilization. Finally, knockdown of ELOVL1 caused a reduction in the activity of the Src kinase LYN, confirming that C24-sphingolipids are particularly important in membrane microdomain function. << Less
Proc. Natl. Acad. Sci. U.S.A. 107:18439-18444(2010) [PubMed] [EuropePMC]
This publication is cited by 15 other entries.
-
An evolutionary perspective on Elovl5 fatty acid elongase: comparison of Northern pike and duplicated paralogs from Atlantic salmon.
Carmona-Antonanzas G., Tocher D.R., Taggart J.B., Leaver M.J.
<h4>Background</h4>The ability to produce physiologically critical LC-PUFA from dietary fatty acids differs greatly among teleost species, and is dependent on the possession and expression of fatty acyl desaturase and elongase genes. Atlantic salmon, as a result of a recently duplicated genome, ha ... >> More
<h4>Background</h4>The ability to produce physiologically critical LC-PUFA from dietary fatty acids differs greatly among teleost species, and is dependent on the possession and expression of fatty acyl desaturase and elongase genes. Atlantic salmon, as a result of a recently duplicated genome, have more of these enzymes than other fish. Recent phylogenetic studies show that Northern pike represents the closest extant relative of the preduplicated ancestral salmonid. Here we characterise a pike fatty acyl elongase, elovl5, and compare it to Atlantic salmon elovl5a and elovl5b duplicates.<h4>Results</h4>Phylogenetic analyses show that Atlantic salmon paralogs are evolving symmetrically, and they have been retained in the genome by purifying selection. Heterologous expression in yeast showed that Northern pike Elovl5 activity is indistinguishable from that of the salmon paralogs, efficiently elongating C18 and C20 substrates. However, in contrast to salmon, pike elovl5 was predominantly expressed in brain with negligible expression in liver and intestine.<h4>Conclusions</h4>We suggest that the predominant expression of Elovl5b in salmon liver and Elovl5a in salmon intestine is an adaptation, enabled by genome duplication, to a diet rich in terrestrial invertebrates which are relatively poor in LC-PUFA. Pike have retained an ancestral expression profile which supports the maintenance of PUFA in the brain but, due to a highly piscivorous LC-PUFA-rich diet, is not required in liver and intestine. Thus, the characterisation of elovl5 in Northern pike provides insights into the evolutionary divergence of duplicated genes, and the ecological adaptations of salmonids which have enabled colonisation of nutrient poor freshwaters. << Less
BMC Evol Biol 13:85-85(2013) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.