Reaction participants Show >> << Hide
- Name help_outline S-adenosyl 3-(methylsulfanyl)propylamine Identifier CHEBI:57443 Charge 2 Formula C14H24N6O3S InChIKeyhelp_outline ZUNBITIXDCPNSD-LSRJEVITSA-O SMILEShelp_outline C[S+](CCC[NH3+])C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline agmatine Identifier CHEBI:58145 Charge 2 Formula C5H16N4 InChIKeyhelp_outline QYPPJABKJHAVHS-UHFFFAOYSA-P SMILEShelp_outline NC(=[NH2+])NCCCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 15 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N1-(3-aminopropyl)agmatine Identifier CHEBI:64335 Charge 3 Formula C8H24N5 InChIKeyhelp_outline XYCUJKFFVBCJEF-UHFFFAOYSA-Q SMILEShelp_outline NC(=[NH2+])NCCCC[NH2+]CCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-methyl-5'-thioadenosine Identifier CHEBI:17509 (Beilstein: 42420; CAS: 2457-80-9) help_outline Charge 0 Formula C11H15N5O3S InChIKeyhelp_outline WUUGFSXJNOTRMR-IOSLPCCCSA-N SMILEShelp_outline CSC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 34 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:36487 | RHEA:36488 | RHEA:36489 | RHEA:36490 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
N1-aminopropylagmatine, a new polyamine produced as a key intermediate in polyamine biosynthesis of an extreme thermophile, Thermus thermophilus.
Ohnuma M., Terui Y., Tamakoshi M., Mitome H., Niitsu M., Samejima K., Kawashima E., Oshima T.
In the extreme thermophile Thermus thermophilus, a disruption mutant of a gene homologous to speB (coding for agmatinase = agmatine ureohydrolase) accumulated N1-aminopropylagmatine (N8-amidino-1,8-diamino-4-azaoctane, N8-amidinospermidine), a new compound, whereas all other polyamines produced by ... >> More
In the extreme thermophile Thermus thermophilus, a disruption mutant of a gene homologous to speB (coding for agmatinase = agmatine ureohydrolase) accumulated N1-aminopropylagmatine (N8-amidino-1,8-diamino-4-azaoctane, N8-amidinospermidine), a new compound, whereas all other polyamines produced by the wild-type strain were absent from the cells. Double disruption of speB and speE (polyamine aminopropyltransferase) resulted in the disappearance of N1-aminopropylagmatine and the accumulation of agmatine. These results suggested the following. 1) N1-Aminopropylagmatine is produced from agmatine by the action of an enzyme coded by speE. 2) N1-Aminopropylagmatine is a metabolic intermediate in the biosynthesis of unique polyamines found in the thermophile. 3) N1-Aminopropylagmatine is a substrate of the SpeB homolog. They further suggest a new biosynthetic pathway in T. thermophilus, by which polyamines are formed from agmatine via N1-aminopropylagmatine. To confirm our speculation, we purified the expression product of the speB homolog and confirmed that the enzyme hydrolyzes N1-aminopropylagmatine to spermidine but does not act on agmatine. << Less
J. Biol. Chem. 280:30073-30082(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The first agmatine/cadaverine aminopropyl transferase: biochemical and structural characterization of an enzyme involved in polyamine biosynthesis in the hyperthermophilic archaeon Pyrococcus furiosus.
Cacciapuoti G., Porcelli M., Moretti M.A., Sorrentino F., Concilio L., Zappia V., Liu Z.J., Tempel W., Schubot F., Rose J.P., Wang B.C., Brereton P.S., Jenney F.E., Adams M.W.
We report here the characterization of the first agmatine/cadaverine aminopropyl transferase (ACAPT), the enzyme responsible for polyamine biosynthesis from an archaeon. The gene PF0127 encoding ACAPT in the hyperthermophile Pyrococcus furiosus was cloned and expressed in Escherichia coli, and the ... >> More
We report here the characterization of the first agmatine/cadaverine aminopropyl transferase (ACAPT), the enzyme responsible for polyamine biosynthesis from an archaeon. The gene PF0127 encoding ACAPT in the hyperthermophile Pyrococcus furiosus was cloned and expressed in Escherichia coli, and the recombinant protein was purified to homogeneity. P. furiosus ACAPT is a homodimer of 65 kDa. The broad substrate specificity of the enzyme toward the amine acceptors is unique, as agmatine, 1,3-diaminopropane, putrescine, cadaverine, and sym-nor-spermidine all serve as substrates. While maximal catalytic activity was observed with cadaverine, agmatine was the preferred substrate on the basis of the k(cat)/K(m) value. P. furiosus ACAPT is thermoactive and thermostable with an apparent melting temperature of 108 degrees C that increases to 112 degrees C in the presence of cadaverine. Limited proteolysis indicated that the only proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is not necessary for the integrity of the active site. The crystal structure of the enzyme determined to 1.8-A resolution confirmed its dimeric nature and provided insight into the proteolytic analyses as well as into mechanisms of thermal stability. Analysis of the polyamine content of P. furiosus showed that spermidine, cadaverine, and sym-nor-spermidine are the major components, with small amounts of sym-nor-spermine and N-(3-aminopropyl)cadaverine (APC). This is the first report in Archaea of an unusual polyamine APC that is proposed to play a role in stress adaptation. << Less
J. Bacteriol. 189:6057-6067(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.