Reaction participants Show >> << Hide
- Name help_outline (5Z,8Z,11Z,14Z,17Z)-eicosapentaenoyl-CoA Identifier CHEBI:73862 Charge -4 Formula C41H60N7O17P3S InChIKeyhelp_outline JWZLRYCDDXHXDL-LCMHIRPZSA-J SMILEShelp_outline CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)N1C=NC2=C1N=CN=C2N 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline malonyl-CoA Identifier CHEBI:57384 Charge -5 Formula C24H33N7O19P3S InChIKeyhelp_outline LTYOQGRJFJAKNA-DVVLENMVSA-I SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 213 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (7Z,10Z,13Z,16Z,19Z)-3-oxodocosapentaenoyl-CoA Identifier CHEBI:73863 Charge -4 Formula C43H62N7O18P3S InChIKeyhelp_outline SLYKKQSPRFJDAF-HVGANWHPSA-J SMILEShelp_outline CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,006 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:36483 | RHEA:36484 | RHEA:36485 | RHEA:36486 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Elongase reactions as control points in long-chain polyunsaturated fatty acid synthesis.
Gregory M.K., Gibson R.A., Cook-Johnson R.J., Cleland L.G., James M.J.
<h4>Background</h4>Δ6-Desaturase (Fads2) is widely regarded as rate-limiting in the conversion of dietary α-linolenic acid (18:3n-3; ALA) to the long-chain omega-3 polyunsaturated fatty acid docosahexaenoic acid (22:6n-3; DHA). However, increasing dietary ALA or the direct Fads2 product, stearidon ... >> More
<h4>Background</h4>Δ6-Desaturase (Fads2) is widely regarded as rate-limiting in the conversion of dietary α-linolenic acid (18:3n-3; ALA) to the long-chain omega-3 polyunsaturated fatty acid docosahexaenoic acid (22:6n-3; DHA). However, increasing dietary ALA or the direct Fads2 product, stearidonic acid (18:4n-3; SDA), increases tissue levels of eicosapentaenoic acid (20:5n-3; EPA) and docosapentaenoic acid (22:5n-3; DPA), but not DHA. These observations suggest that one or more control points must exist beyond ALA metabolism by Fads2. One possible control point is a second reaction involving Fads2 itself, since this enzyme catalyses desaturation of 24:5n-3 to 24:6n-3, as well as ALA to SDA. However, metabolism of EPA and DPA both require elongation reactions. This study examined the activities of two elongase enzymes as well as the second reaction of Fads2 in order to concentrate on the metabolism of EPA to DHA.<h4>Methodology/principal findings</h4>The substrate selectivities, competitive substrate interactions and dose response curves of the rat elongases, Elovl2 and Elovl5 were determined after expression of the enzymes in yeast. The competitive substrate interactions for rat Fads2 were also examined. Rat Elovl2 was active with C(20) and C(22) polyunsaturated fatty acids and this single enzyme catalysed the sequential elongation reactions of EPA→DPA→24:5n-3. The second reaction DPA→24:5n-3 appeared to be saturated at substrate concentrations not saturating for the first reaction EPA→DPA. ALA dose-dependently inhibited Fads2 conversion of 24:5n-3 to 24:6n-3.<h4>Conclusions</h4>The competition between ALA and 24:5n-3 for Fads2 may explain the decrease in DHA levels observed after certain intakes of dietary ALA have been exceeded. In addition, the apparent saturation of the second Elovl2 reaction, DPA→24:5n-3, provides further explanations for the accumulation of DPA when ALA, SDA or EPA is provided in the diet. This study suggests that Elovl2 will be critical in understanding if DHA synthesis can be increased by dietary means. << Less
PLoS ONE 6:E29662-E29662(2011) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Identification and expression of mammalian long-chain PUFA elongation enzymes.
Leonard A.E., Kelder B., Bobik E.G., Chuang L.-T., Lewis C.J., Kopchick J.J., Mukerji P., Huang Y.-S.
In mammalian cells, Sprecher has proposed that the synthesis of long-chain PUFA from the 20-carbon substrates involves two consecutive elongation steps, a delta6-desaturation step followed by retroconversion (Sprecher, H., Biochim. Biophys. Acta 1486, 219-231, 2000). We searched the database using ... >> More
In mammalian cells, Sprecher has proposed that the synthesis of long-chain PUFA from the 20-carbon substrates involves two consecutive elongation steps, a delta6-desaturation step followed by retroconversion (Sprecher, H., Biochim. Biophys. Acta 1486, 219-231, 2000). We searched the database using the translated sequence of human elongase ELOVL5, whose encoded enzyme elongates monounsaturated and polyunsaturated FA, as a query to identify the enzyme(s) involved in elongation of very long chain PUFA. The database search led to the isolation of two cDNA clones from human and mouse. These clones displayed deduced amino acid sequences that had 56.4 and 58% identity, respectively, to that of ELOVL5. The open reading frame of the human clone (ELOVL2) encodes a 296-amino acid peptide, whereas the mouse clone (Elovl2) encodes a 292-amino acid peptide. Expression of these open reading frames in baker's yeast, Saccharomyces cerevisiae, demonstrated that the encoded proteins were involved in the elongation of both 20- and 22-carbon long-chain PUFA, as determined by the conversion of 20:4n-6 to 22:4n-6, 22:4n-6 to 24:4n-6, 20:5n-3 to 22:5n-3, and 22:5n-3 to 24:5n-3. The elongation activity of the mouse Elovl2 was further demonstrated in the transformed mouse L cells incubated with long-chain (C20- and C22-carbon) n-6 and n-3 PUFA substrates by the significant increase in the levels of 24:4n-6 and 24:5n-3, respectively. This report demonstrates the isolation and identification of two mammalian genes that encode very long chain PUFA specific elongation enzymes in the Sprecher pathway for DHA synthesis. << Less
Lipids 37:733-740(2002) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
An evolutionary perspective on Elovl5 fatty acid elongase: comparison of Northern pike and duplicated paralogs from Atlantic salmon.
Carmona-Antonanzas G., Tocher D.R., Taggart J.B., Leaver M.J.
<h4>Background</h4>The ability to produce physiologically critical LC-PUFA from dietary fatty acids differs greatly among teleost species, and is dependent on the possession and expression of fatty acyl desaturase and elongase genes. Atlantic salmon, as a result of a recently duplicated genome, ha ... >> More
<h4>Background</h4>The ability to produce physiologically critical LC-PUFA from dietary fatty acids differs greatly among teleost species, and is dependent on the possession and expression of fatty acyl desaturase and elongase genes. Atlantic salmon, as a result of a recently duplicated genome, have more of these enzymes than other fish. Recent phylogenetic studies show that Northern pike represents the closest extant relative of the preduplicated ancestral salmonid. Here we characterise a pike fatty acyl elongase, elovl5, and compare it to Atlantic salmon elovl5a and elovl5b duplicates.<h4>Results</h4>Phylogenetic analyses show that Atlantic salmon paralogs are evolving symmetrically, and they have been retained in the genome by purifying selection. Heterologous expression in yeast showed that Northern pike Elovl5 activity is indistinguishable from that of the salmon paralogs, efficiently elongating C18 and C20 substrates. However, in contrast to salmon, pike elovl5 was predominantly expressed in brain with negligible expression in liver and intestine.<h4>Conclusions</h4>We suggest that the predominant expression of Elovl5b in salmon liver and Elovl5a in salmon intestine is an adaptation, enabled by genome duplication, to a diet rich in terrestrial invertebrates which are relatively poor in LC-PUFA. Pike have retained an ancestral expression profile which supports the maintenance of PUFA in the brain but, due to a highly piscivorous LC-PUFA-rich diet, is not required in liver and intestine. Thus, the characterisation of elovl5 in Northern pike provides insights into the evolutionary divergence of duplicated genes, and the ecological adaptations of salmonids which have enabled colonisation of nutrient poor freshwaters. << Less
BMC Evol Biol 13:85-85(2013) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Activity of human Delta5 and Delta6 desaturases on multiple n-3 and n-6 polyunsaturated fatty acids.
de Antueno R.J., Knickle L.C., Smith H., Elliot M.L., Allen S.J., Nwaka S., Winther M.D.
Yeast co-expressing human elongase and desaturase genes were used to investigate whether the same desaturase gene encodes an enzyme able to desaturate n-3 and n-6 fatty acids with the same or different carbon chain length. The results clearly demonstrated that a single human Delta5 desaturase is a ... >> More
Yeast co-expressing human elongase and desaturase genes were used to investigate whether the same desaturase gene encodes an enzyme able to desaturate n-3 and n-6 fatty acids with the same or different carbon chain length. The results clearly demonstrated that a single human Delta5 desaturase is active on 20:3n-6 and 20:4n-3. Endogenous Delta6 desaturase substrates were generated by providing to the yeast radiolabelled 20:4n-6 or 20:5n-3 which, through two sequential elongations, produced 24:4n-6 and 24:5n-3, respectively. Overall, our data suggest that a single human Delta6 desaturase is active on 18:2n-6, 18:3n-3, 24:4n-6 and 24:5n-3. << Less
FEBS Lett. 509:77-80(2001) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.