Reaction participants Show >> << Hide
- Name help_outline a purine 2'-deoxy-D-ribonucleoside Identifier CHEBI:142361 Charge 0 Formula C10H11N4O3R2 SMILEShelp_outline C1(=*)NC(=NC2=C1N=CN2[C@@H]3O[C@H](CO)[C@@H](O)C3)* 2D coordinates Mol file for the small molecule Search links Involved in 21 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-deoxy-α-D-ribose 1-phosphate Identifier CHEBI:57259 Charge -2 Formula C5H9O7P InChIKeyhelp_outline KBDKAJNTYKVSEK-VPENINKCSA-L SMILEShelp_outline OC[C@H]1O[C@@H](C[C@@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a purine nucleobase Identifier CHEBI:26386 Charge 0 Formula C5H3N4R2 SMILEShelp_outline C1(NC(=NC=2NC=NC12)*)=* 2D coordinates Mol file for the small molecule Search links Involved in 70 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:36431 | RHEA:36432 | RHEA:36433 | RHEA:36434 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Open and closed conformation of the E. coli purine nucleoside phosphorylase active center and implications for the catalytic mechanism.
Koellner G., Bzowska A., Wielgus-Kutrowska B., Luic M., Steiner T., Saenger W., Stepinski J.
The crystal structure of the ternary complex of hexameric purine nucleoside phosphorylase (PNP) from Escherichia coli with formycin A derivatives and phosphate or sulphate ions is determined at 2.0 A resolution. The hexamer is found as a trimer of unsymmetric dimers, which are formed by pairs of m ... >> More
The crystal structure of the ternary complex of hexameric purine nucleoside phosphorylase (PNP) from Escherichia coli with formycin A derivatives and phosphate or sulphate ions is determined at 2.0 A resolution. The hexamer is found as a trimer of unsymmetric dimers, which are formed by pairs of monomers with active sites in different conformations. The conformational difference stems from a flexible helix (H8: 214-236), which is continuous in one conformer, and segmented in the other. With the continuous helix, the entry into the active site pocket is wide open, and the ligands are bound only loosely ("open" or "loose binding" conformation). By segmentation of the helix (H8: 214-219 and H8': 223-236, separated by a gamma-turn), the entry into the active site is partially closed, the pocket is narrowed and the ligands are bound much more tightly ("closed" or "tight binding" conformation). Furthermore, the side-chain of Arg217 is carried by the moving helix into the active site. This residue, conserved in all homologous PNPs, plays an important role in the proposed catalytic mechanism. In this mechanism, substrate binding takes place in the open, and and the catalytic action occurs in the closed conformation. Catalytic action involves protonation of the purine base at position N7 by the side-chain of Asp204, which is initially in the acid form. The proton transfer is triggered by the Arg217 side-chain which is moved by the conformation change into hydrogen bond distance to Asp204. The mechanism explains the broad specificity of E. coli PNP, which allows 6-amino as well as 6-oxo-nucleosides as substrates. The observation of two kinds of binding sites is fully in line with solution experiments which independently observe strong and weak binding sites for phosphate as well as for the nucleoside inhibitor. << Less
-
Purification and comparative properties of a pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus.
Saunders P.P., Wilson B.A., Saunders G.F.
J Biol Chem 244:3691-3697(1969) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
A novel hyperthermostable 5'-deoxy-5'-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus.
Cacciapuoti G., Forte S., Moretti M.A., Brio A., Zappia V., Porcelli M.
We report herein the first molecular characterization of 5'-deoxy-5'-methylthio-adenosine phosphorylase II from Sulfolobus solfataricus (SsMTAPII). The isolated gene of SsMTAPII was overexpressed in Escherichia coli BL21. Purified recombinant SsMTAPII is a homohexamer of 180 kDa with an extremely ... >> More
We report herein the first molecular characterization of 5'-deoxy-5'-methylthio-adenosine phosphorylase II from Sulfolobus solfataricus (SsMTAPII). The isolated gene of SsMTAPII was overexpressed in Escherichia coli BL21. Purified recombinant SsMTAPII is a homohexamer of 180 kDa with an extremely low Km (0.7 microm) for 5'-deoxy-5'-methylthioadenosine. The enzyme is highly thermophilic with an optimum temperature of 120 degrees C and extremely thermostable with an apparent Tm of 112 degrees C that increases in the presence of substrates. The enzyme is characterized by high kinetic stability and remarkable SDS resistance and is also resistant to guanidinium chloride-induced unfolding with a transition midpoint of 3.3 m after 22-h incubation. Limited proteolysis experiments indicated that the only one proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is necessary for the integrity of the active site. Moreover, the binding of 5'-deoxy-5'-methylthioadenosine induces a conformational transition that protected the enzyme against protease inactivation. By site-directed mutagenesis we demonstrated that Cys259, Cys261 and Cys262 play an important role in the enzyme stability since the mutants C259S/C261S and C262S show thermophilicity and thermostability features significantly lower than those of the wild-type enzyme. In order to get insight into the physiological role of SsMTAPII a comparative kinetic analysis with the homologous 5'-deoxy-5'-methylthioadenosine phosphorylase from Sulfolobus solfataricus (SsMTAP) was carried out. Finally, the alignment of the protein sequence of SsMTAPII with those of SsMTAP and human 5'-deoxy-5'-methylthioadenosine phosphorylase (hMTAP) shows several key residue changes that may account why SsMTAPII, unlike hMTAP, is able to recognize adenosine as substrate. << Less
-
Purification and characterization of purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus TH 6-2.
Hamamoto T., Noguchi T., Midorikawa Y.
The purine nucleoside phosphorylase (Pu-NPase) and the pyrimidine nucleoside phosphorylase (Py-NPase) have been purified from Bacillus stearothermophilus TH 6-2. The Pu-NPase is a trimer of 30-kDa subunits and the Py-NPase is a dimer of 46-kDa subunits. The isoelectric points of Pu-NPase and Py-NP ... >> More
The purine nucleoside phosphorylase (Pu-NPase) and the pyrimidine nucleoside phosphorylase (Py-NPase) have been purified from Bacillus stearothermophilus TH 6-2. The Pu-NPase is a trimer of 30-kDa subunits and the Py-NPase is a dimer of 46-kDa subunits. The isoelectric points of Pu-NPase and Py-NPase were pH 4.3 and 4.6, respectively. The Pu-NPase could catalyze the phosphorolysis of inosine and guanosine, but not adenosine. the Py-NPase could phosphorolyze both uridine and thymidine. << Less
Biosci. Biotechnol. Biochem. 60:1179-1180(1996) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
[Phosphorolysis and hydrolysis of purine ribosides by enzymes from yeast].
HEPPEL L.A., HILMOE R.J.