Reaction participants Show >> << Hide
- Name help_outline dimethylallyl diphosphate Identifier CHEBI:57623 (CAS: 22679-02-3) help_outline Charge -3 Formula C5H9O7P2 InChIKeyhelp_outline CBIDRCWHNCKSTO-UHFFFAOYSA-K SMILEShelp_outline CC(C)=CCOP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 79 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N6-(dimethylallyl)adenosine 5'-triphosphate Identifier CHEBI:73532 Charge -4 Formula C15H20N5O13P3 InChIKeyhelp_outline OPLVZTYVQUWKHB-SDBHATRESA-J SMILEShelp_outline CC(C)=CCNc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:36331 | RHEA:36332 | RHEA:36333 | RHEA:36334 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases.
Kakimoto T.
It has been believed that the key step in cytokinin biosynthesis is the addition of a 5-carbon chain to the N(6) of AMP. To identify cytokinin biosynthesis enzymes that catalyze the formation of the isopentenyl side chain of cytokinins, the Arabidopsis genomic sequence was searched for genes that ... >> More
It has been believed that the key step in cytokinin biosynthesis is the addition of a 5-carbon chain to the N(6) of AMP. To identify cytokinin biosynthesis enzymes that catalyze the formation of the isopentenyl side chain of cytokinins, the Arabidopsis genomic sequence was searched for genes that could code for isopentenyltransferases. This resulted in the identification of nine putative genes for isopentenyltransferases. One of these, AtIPT4, was subjected to detailed analysis. Overexpression of AtIPT4 caused cytokinin-independent shoot formation on calli. As shoot formation on calli normally occurs only when cytokinins are applied, it suggested that this gene product catalyzed cytokinin biosynthesis in plants. Recombinant AtIPT4 catalyzed the transfer of an isopentenyl group from dimethylallyl diphosphate to the N(6) of ATP and ADP, but not to that of AMP. AtIPT4 did not exhibit the DMAPP:tRNA isopentenyltransferase activity. These results indicate that cytokinins are, at least in part, synthesized from ATP and ADP in plants. << Less
Plant Cell Physiol. 42:677-685(2001) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana.
Takei K., Sakakibara H., Sugiyama T.
The initial step in the de novo biosynthesis of cytokinin in higher plants is the formation of isopentenyladenosine 5'-monophosphate (iPMP) from AMP and dimethylallylpyrophosphate (DMAPP), which is catalyzed by adenylate isopentenyltransferase (IPT). Although cytokinin is an essential hormone for ... >> More
The initial step in the de novo biosynthesis of cytokinin in higher plants is the formation of isopentenyladenosine 5'-monophosphate (iPMP) from AMP and dimethylallylpyrophosphate (DMAPP), which is catalyzed by adenylate isopentenyltransferase (IPT). Although cytokinin is an essential hormone for growth and development, the nature of the enzyme for its biosynthesis in higher plants has not been identified. Herein, we describe the molecular cloning and biochemical identification of IPTs from Arabidopsis thaliana. Eight cDNAs encoding putative IPT, designated as AtIPT1 to AtIPT8, were picked up from A. thaliana. The Escherichia coli transformants expressing the recombinant proteins excreted cytokinin species into the culture medium except for that expressing AtIPT2 that is a putative tRNA IPT. A purified recombinant AtIPT1 catalyzed the formation of iPMP from DMAPP and AMP. These results indicate that the small multigene family contains both types of isopentenyltransferase, which could synthesize cytokinin and mature tRNA. << Less
J. Biol. Chem. 276:26405-26410(2001) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Molecular cloning, expression, and characterization of adenylate isopentenyltransferase from hop (Humulus lupulus L.).
Sakano Y., Okada Y., Matsunaga A., Suwama T., Kaneko T., Ito K., Noguchi H., Abe I.
A cDNA encoding adenylate isopentenyltransferase (AIPT) was cloned and sequenced from cones of hop (Humulus lupulus L.) by RT-PCR using oligonucleotide primers based on the conserved sequences of Arabidopsis thaliana AIPT isozymes (AtIPT1, AtIPT3, AtIPT4, AtIPT5, AtIPT6, AtIPT7 and AtIPT8). A full ... >> More
A cDNA encoding adenylate isopentenyltransferase (AIPT) was cloned and sequenced from cones of hop (Humulus lupulus L.) by RT-PCR using oligonucleotide primers based on the conserved sequences of Arabidopsis thaliana AIPT isozymes (AtIPT1, AtIPT3, AtIPT4, AtIPT5, AtIPT6, AtIPT7 and AtIPT8). A full-length cDNA contained a 990-bp open reading frame encoding a molecular mass of 36,603 Da protein with 329 amino acids. Further, DNA sequencing of genomic DNA revealed absence of introns in the frame. On Southern blot analysis, a single AIPT gene was detected in H. lupulus, while RT-PCR analyses demonstrated that the gene was equally expressed in almost all tissues in the plant including roots, stems, leaves and cones. The deduced amino acid sequence shares 38-51% identity to those of A. thaliana AtIPTs. A recombinant enzyme expressed in Escherichia coli catalyzed isopentenyl transfer reaction from dimethylallyldiphosphate (DMAPP) to the N6 amino group of adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP), respectively. In contrast, other nucleotides; guanosine monophosphate (GMP), inosine monophosphate (IMP), cytosine monophosphate (CMP), uridine monophosphate (UMP), were not accepted as a substrate. Interestingly, steady-state kinetic analyses revealed that the isopentenylation of ADP and ATP were more efficient than that of AMP as previously reported for A. thaliana AtIPT4. Finally, H. lupulus AIPT contains the putative ATP/GTP binding motif at the N-terminal as in the case of other known isopentenyltransferases. Site-directed mutagenesis of a conserved Asp62, located right after the ATP/GTP binding motif, with Ala resulted in complete loss of enzyme activity. << Less
Phytochemistry 65:2439-2446(2004) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.