Reaction participants Show >> << Hide
- Name help_outline (E)-caffeoyl-CoA Identifier CHEBI:87136 Charge -4 Formula C30H38N7O19P3S InChIKeyhelp_outline QHRGJMIMHCLHRG-ZSELIEHESA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)\C=C\c1ccc(O)c(O)c1 2D coordinates Mol file for the small molecule Search links Involved in 15 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3,4-dihydroxybenzaldehyde Identifier CHEBI:50205 (Beilstein: 774381; CAS: 139-85-5) help_outline Charge 0 Formula C7H6O3 InChIKeyhelp_outline IBGBGRVKPALMCQ-UHFFFAOYSA-N SMILEShelp_outline [H]C(=O)c1ccc(O)c(O)c1 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 361 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:36307 | RHEA:36308 | RHEA:36309 | RHEA:36310 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Publications
-
4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL)--An enzyme of phenylpropanoid chain cleavage from Pseudomonas.
Mitra A., Kitamura Y., Gasson M.J., Narbad A., Parr A.J., Payne J., Rhodes M.J., Sewter C., Walton N.J.
The enzyme 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL), which catalyzes a hydration and two-carbon cleavage step in the degradation of 4-hydroxycinnamic acids, has been purified and characterized from Pseudomonas fluorescens strain AN103. The enzyme is a homodimer and is active with three closel ... >> More
The enzyme 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL), which catalyzes a hydration and two-carbon cleavage step in the degradation of 4-hydroxycinnamic acids, has been purified and characterized from Pseudomonas fluorescens strain AN103. The enzyme is a homodimer and is active with three closely related substrates, 4-coumaroyl-CoA, caffeoyl-CoA, and feruloyl-CoA (Km values: 5.2, 1.6, and 2.4 microM, respectively), but not with cinnamoyl-CoA or with sinapinoyl-CoA. The abundance of the enzyme reflects a low catalytic center activity (2.3 molecules s-1 at 30 degrees C; 4-coumaroyl-CoA as substrate). << Less
Arch. Biochem. Biophys. 365:10-16(1999) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440.
Jimenez J.I., Minambres B., Garcia J.L., Diaz E.
Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, tha ... >> More
Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds. << Less
Environ Microbiol 4:824-841(2002) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199.
Overhage J., Priefert H., Steinbuchel A.
The gene loci fcs, encoding feruloyl coenzyme A (feruloyl-CoA) synthetase, ech, encoding enoyl-CoA hydratase/aldolase, and aat, encoding beta-ketothiolase, which are involved in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199 (DSM7063), were localized on a DNA region cov ... >> More
The gene loci fcs, encoding feruloyl coenzyme A (feruloyl-CoA) synthetase, ech, encoding enoyl-CoA hydratase/aldolase, and aat, encoding beta-ketothiolase, which are involved in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199 (DSM7063), were localized on a DNA region covered by two EcoRI fragments (E230 and E94), which were recently cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The nucleotide sequences of parts of fragments E230 and E94 were determined, revealing the arrangement of the aforementioned genes. To confirm the function of the structural genes fcs and ech, they were cloned and expressed in Escherichia coli. Recombinant strains harboring both genes were able to transform ferulic acid to vanillin. The feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase activities of the fcs and ech gene products, respectively, were confirmed by photometric assays and by high-pressure liquid chromatography analysis. To prove the essential involvement of the fcs, ech, and aat genes in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199, these genes were inactivated separately by the insertion of omega elements. The corresponding mutants Pseudomonas sp. strain HRfcsOmegaGm and Pseudomonas sp. strain HRechOmegaKm were not able to grow on ferulic acid or on eugenol, whereas the mutant Pseudomonas sp. strain HRaatOmegaKm exhibited a ferulic acid- and eugenol-positive phenotype like the wild type. In conclusion, the degradation pathway of eugenol via ferulic acid and the necessity of the activation of ferulic acid to the corresponding CoA ester was confirmed. The aat gene product was shown not to be involved in this catabolism, thus excluding a beta-oxidation analogous degradation pathway for ferulic acid. Moreover, the function of the ech gene product as an enoyl-CoA hydratase/aldolase suggests that ferulic acid degradation in Pseudomonas sp. strain HR199 proceeds via a similar pathway to that recently described for Pseudomonas fluorescens AN103. << Less
Appl Environ Microbiol 65:4837-4847(1999) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
A ternary complex of hydroxycinnamoyl-CoA hydratase-lyase (HCHL) with acetyl-CoA and vanillin gives insights into substrate specificity and mechanism.
Bennett J.P., Bertin L., Moulton B., Fairlamb I.J., Brzozowski A.M., Walton N.J., Grogan G.
HCHL (hydroxycinnamoyl-CoA hydratase-lyase) catalyses the biotransformation of feruloyl-CoA to acetyl-CoA and the important flavour-fragrance compound vanillin (4-hydroxy-3-methoxybenzaldehyde) and is exploited in whole-cell systems for the bioconversion of ferulic acid into natural equivalent van ... >> More
HCHL (hydroxycinnamoyl-CoA hydratase-lyase) catalyses the biotransformation of feruloyl-CoA to acetyl-CoA and the important flavour-fragrance compound vanillin (4-hydroxy-3-methoxybenzaldehyde) and is exploited in whole-cell systems for the bioconversion of ferulic acid into natural equivalent vanillin. The reaction catalysed by HCHL has been thought to proceed by a two-step process involving first the hydration of the double bond of feruloyl-CoA and then the cleavage of the resultant beta-hydroxy thioester by retro-aldol reaction to yield the products. Kinetic analysis of active-site residues identified using the crystal structure of HCHL revealed that while Glu-143 was essential for activity, Ser-123 played no major role in catalysis. However, mutation of Tyr-239 to Phe greatly increased the K(M) for the substrate ferulic acid, fulfilling its anticipated role as a factor in substrate binding. Structures of WT (wild-type) HCHL and of the S123A mutant, each of which had been co-crystallized with feruloyl-CoA, reveal a subtle helix movement upon ligand binding, the consequence of which is to bring the phenolic hydroxyl of Tyr-239 into close proximity to Tyr-75 from a neighbouring subunit in order to bind the phenolic hydroxyl of the product vanillin, for which electron density was observed. The active-site residues of ligand-bound HCHL display a remarkable three-dimensional overlap with those of a structurally unrelated enzyme, vanillyl alcohol oxidase, that also recognizes p-hydroxylated aromatic substrates related to vanillin. The data both explain the observed substrate specificity of HCHL for p-hydroxylated cinnamate derivatives and illustrate a remarkable convergence of the molecular determinants of ligand recognition between the two otherwise unrelated enzymes. << Less
Biochem. J. 414:281-289(2008) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Anaerobic p-coumarate degradation by Rhodopseudomonas palustris and identification of CouR, a MarR repressor protein that binds p-coumaroyl coenzyme A.
Hirakawa H., Schaefer A.L., Greenberg E.P., Harwood C.S.
The phenylpropanoid p-coumarate and structurally related aromatic compounds are produced in large amounts by green plants and are excellent carbon sources for many soil bacteria. Aerobic bacteria remove the acyl side chain from phenylpropanoids to leave an aromatic aldehyde, which then enters one ... >> More
The phenylpropanoid p-coumarate and structurally related aromatic compounds are produced in large amounts by green plants and are excellent carbon sources for many soil bacteria. Aerobic bacteria remove the acyl side chain from phenylpropanoids to leave an aromatic aldehyde, which then enters one of several possible central pathways of benzene ring degradation. We investigated the pathway for the anaerobic degradation of p-coumarate by the phototrophic bacterium Rhodopseudomonas palustris and found that it also follows this metabolic logic. We characterized enzymes for the conversion of p-coumarate to p-hydroxybenzaldehyde and acetyl coenzyme A (acetyl-CoA) encoded by the couAB operon. We also identified a MarR family transcriptional regulator that we named CouR. A couR mutant had elevated couAB expression. In addition, His-tagged CouR bound with high affinity to a DNA fragment encompassing the couAB promoter region, and binding was abrogated by the addition of nanomolar quantities of p-coumaroyl-CoA but not by p-coumarate. Footprinting demonstrated binding of CouR to an inverted repeat sequence that overlaps the -10 region of the couAB promoter. Our results provide evidence for binding of a CoA-modified aromatic compound by a MarR family member. Although the MarR family is widely distributed in bacteria and archaea and includes over 12,000 members, ligands have been identified for relatively few family members. Here we provide biochemical evidence for a new category of MarR ligand. << Less
J Bacteriol 194:1960-1967(2012) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester.
Gasson M.J., Kitamura Y., McLauchlan W.R., Narbad A., Parr A.J., Parsons E.L., Payne J., Rhodes M.J., Walton N.J.
A gene encoding a novel enoyl-SCoA hydratase/lyase enzyme for the hydration and nonoxidative cleavage of feruloyl-SCoA to vanillin and acetyl-SCoA was isolated and characterized from a strain of Pseudomonas fluorescens. Feruloyl-SCoA is the CoASH thioester of ferulic acid (4-hydroxy-3-methoxy-tran ... >> More
A gene encoding a novel enoyl-SCoA hydratase/lyase enzyme for the hydration and nonoxidative cleavage of feruloyl-SCoA to vanillin and acetyl-SCoA was isolated and characterized from a strain of Pseudomonas fluorescens. Feruloyl-SCoA is the CoASH thioester of ferulic acid (4-hydroxy-3-methoxy-trans-cinnamic acid), an abundant constituent of plant cell walls and a degradation product of lignin. The gene was isolated by a combination of mutant complementation and biochemical approaches, and its function was demonstrated by heterologous expression in Escherichia coli under the control of a T7 RNA polymerase promoter. The gene product is a member of the enoyl-SCoA hydratase/isomerase superfamily. << Less
J. Biol. Chem. 273:4163-4170(1998) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358.
Venturi V., Zennaro F., Degrassi G., Okeke B., Bruschi C.
Transposon Tn5 genomic mutants of plant-growth-promoting Pseudomonas putida strain WCS358 have been isolated which no longer utilize ferulic and coumaric acids as sole sources of carbon and energy. Genetic studies confirmed previous biochemical data showing that ferulic acid is degraded via vanill ... >> More
Transposon Tn5 genomic mutants of plant-growth-promoting Pseudomonas putida strain WCS358 have been isolated which no longer utilize ferulic and coumaric acids as sole sources of carbon and energy. Genetic studies confirmed previous biochemical data showing that ferulic acid is degraded via vanillic acid, and coumaric acid via hydroxybenzoic acid. The genes involved in these enzymic steps were cloned and characterized. Two proteins designated Fca (26.5 kDa) and Vdh (50.3 kDa) were identified as responsible for the conversion of ferulic acid to vanillic acid; the proteins are encoded by the fca and vdh genes which are organized in an operon structure in the chromosome. The Vdh protein is 69% identical at the amino acid level to the Vdh protein recently identified in Pseudomonas sp. strain HR199 and converts vanillin to vanillic acid. Homology studies revealed that the Vdh proteins exhibited significant identity to aldehyde dehydrogenases from different organisms whereas Fca belonged to the enoyl-CoA hydratase family of proteins. Two proteins, designated VanA (39.9 kDa) and VanB (34.3 kDa), encoded by two genes, vanA and vanB, are organized in an operon in the chromosome. They were found to be responsible for the demethylation of vanillic acid to protocatechuic acid. The VanA proteins showed no homology to any other known protein, while VanB belonged to the ferredoxin family of proteins. This two-component enzyme system demethylated another phenolic monomer, veratric acid, thus indicating broad specificity. Studies of the regulation of the vanAB operon demonstrated that the genes were induced by the substrate, vanillic acid; however, the strongest induction was observed when cells were grown in the presence of the product of the reaction, protocatechuic acid. << Less
Microbiology 144:965-973(1998) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
Comments
Multi-step reaction: RHEA:62424 and RHEA:62428