Enzymes
UniProtKB help_outline | 7,697 proteins |
Reaction participants Show >> << Hide
- Name help_outline (E)-hexadec-2-enoate Identifier CHEBI:72745 Charge -1 Formula C16H29O2 InChIKeyhelp_outline ZVRMGCSSSYZGSM-CCEZHUSRSA-M SMILEShelp_outline CCCCCCCCCCCCC\C=C\C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2E)-hexadecenoyl-CoA Identifier CHEBI:61526 Charge -4 Formula C37H60N7O17P3S InChIKeyhelp_outline JUPAQFRKPHPXLD-MSHHSVQMSA-J SMILEShelp_outline [C@@H]1(N2C3=C(C(=NC=N3)N)N=C2)O[C@H](COP(OP(OCC([C@H](C(NCCC(NCCSC(=O)/C=C/CCCCCCCCCCCCC)=O)=O)O)(C)C)(=O)[O-])(=O)[O-])[C@H]([C@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 508 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:36139 | RHEA:36140 | RHEA:36141 | RHEA:36142 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The Sjogren-Larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway.
Nakahara K., Ohkuni A., Kitamura T., Abe K., Naganuma T., Ohno Y., Zoeller R.A., Kihara A.
Sphingosine 1-phosphate (S1P) functions not only as a bioactive lipid molecule, but also as an important intermediate of the sole sphingolipid-to-glycerolipid metabolic pathway. However, the precise reactions and the enzymes involved in this pathway remain unresolved. We report here that yeast HFD ... >> More
Sphingosine 1-phosphate (S1P) functions not only as a bioactive lipid molecule, but also as an important intermediate of the sole sphingolipid-to-glycerolipid metabolic pathway. However, the precise reactions and the enzymes involved in this pathway remain unresolved. We report here that yeast HFD1 and the Sjögren-Larsson syndrome (SLS)-causative mammalian gene ALDH3A2 are responsible for conversion of the S1P degradation product hexadecenal to hexadecenoic acid. The absence of ALDH3A2 in CHO-K1 mutant cells caused abnormal metabolism of S1P/hexadecenal to ether-linked glycerolipids. Moreover, we demonstrate that yeast Faa1 and Faa4 and mammalian ACSL family members are acyl-CoA synthetases involved in the sphingolipid-to-glycerolipid metabolic pathway and that hexadecenoic acid accumulates in Δfaa1 Δfaa4 mutant cells. These results unveil the entire S1P metabolic pathway: S1P is metabolized to glycerolipids via hexadecenal, hexadecenoic acid, hexadecenoyl-CoA, and palmitoyl-CoA. From our results we propose a possibility that accumulation of the S1P metabolite hexadecenal contributes to the pathogenesis of SLS. << Less
Mol. Cell 46:461-471(2012) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.