Reaction participants Show >> << Hide
- Name help_outline 2,3-bis-O-(phytanyl)-sn-glycerol 1-phosphate Identifier CHEBI:73125 Charge -2 Formula C43H87O6P InChIKeyhelp_outline UKQGAMWGTOTQPC-ALOLAALWSA-L SMILEShelp_outline CC(C)CCC[C@@H](C)CCC[C@@H](C)CCC[C@@H](C)CCOC[C@@H](COP([O-])([O-])=O)OCC[C@H](C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2,3-bis-O-(geranylgeranyl)-sn-glycerol 1-phosphate Identifier CHEBI:58837 Charge -2 Formula C43H71O6P InChIKeyhelp_outline WHMXLRRVANEOOG-MVFIEKMPSA-L SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COC[C@@H](COP([O-])([O-])=O)OC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:36035 | RHEA:36036 | RHEA:36037 | RHEA:36038 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Insights into substrate specificity of geranylgeranyl reductases revealed by the structure of digeranylgeranylglycerophospholipid reductase, an essential enzyme in the biosynthesis of archaeal membrane lipids.
Xu Q., Eguchi T., Mathews I.I., Rife C.L., Chiu H.J., Farr C.L., Feuerhelm J., Jaroszewski L., Klock H.E., Knuth M.W., Miller M.D., Weekes D., Elsliger M.A., Deacon A.M., Godzik A., Lesley S.A., Wilson I.A.
Archaeal membrane lipids consist of branched, saturated hydrocarbons distinct from those found in bacteria and eukaryotes. Digeranylgeranylglycerophospholipid reductase (DGGR) catalyzes the hydrogenation process that converts unsaturated 2,3-di-O-geranylgeranylglyceryl phosphate to saturated 2,3-d ... >> More
Archaeal membrane lipids consist of branched, saturated hydrocarbons distinct from those found in bacteria and eukaryotes. Digeranylgeranylglycerophospholipid reductase (DGGR) catalyzes the hydrogenation process that converts unsaturated 2,3-di-O-geranylgeranylglyceryl phosphate to saturated 2,3-di-O-phytanylglyceryl phosphate as a critical step in the biosynthesis of archaeal membrane lipids. The saturation of hydrocarbon chains confers the ability to resist hydrolysis and oxidation and helps archaea withstand extreme conditions. DGGR is a member of the geranylgeranyl reductase family that is also widely distributed in bacteria and plants, where the family members are involved in the biosynthesis of photosynthetic pigments. We have determined the crystal structure of DGGR from the thermophilic heterotrophic archaea Thermoplasma acidophilum at 1.6 Å resolution, in complex with flavin adenine dinucleotide (FAD) and a bacterial lipid. The DGGR structure can be assigned to the well-studied, p-hydroxybenzoate hydroxylase (PHBH) SCOP superfamily of flavoproteins that include many aromatic hydroxylases and other enzymes with diverse functions. In the DGGR complex, FAD adopts the IN conformation (closed) previously observed in other PHBH flavoproteins. DGGR contains a large substrate-binding site that extends across the entire ligand-binding domain. Electron density corresponding to a bacterial lipid was found within this cavity. The cavity consists of a large opening that tapers down to two, narrow, curved tunnels that closely mimic the shape of the preferred substrate. We identified a sequence motif, PxxYxWxFP, that defines a specificity pocket in the enzyme and precisely aligns the double bond of the geranyl group with respect to the FAD cofactor, thus providing a structural basis for the substrate specificity of geranylgeranyl reductases. DGGR is likely to share a common mechanism with other PHBH enzymes in which FAD switches between two conformations that correspond to the reductive and oxidative half cycles. The structure provides evidence that substrate binding likely involves conformational changes, which are coupled to the two conformational states of the FAD. << Less
J. Mol. Biol. 404:403-417(2010) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Biosynthesis of archaeal membrane lipids: digeranylgeranylglycerophospholipid reductase of the thermoacidophilic archaeon Thermoplasma acidophilum.
Nishimura Y., Eguchi T.
The basic core structure of archaeal membrane lipids is 2,3-di-O-phytanyl-sn-glyceryl phosphate (archaetidic acid), which is formed by the reduction of 2,3-di-O-geranylgeranylglyceryl phosphate. The reductase activity for the key enzyme in membrane lipid biosynthesis, 2,3-digeranylgeranylglyceroph ... >> More
The basic core structure of archaeal membrane lipids is 2,3-di-O-phytanyl-sn-glyceryl phosphate (archaetidic acid), which is formed by the reduction of 2,3-di-O-geranylgeranylglyceryl phosphate. The reductase activity for the key enzyme in membrane lipid biosynthesis, 2,3-digeranylgeranylglycerophospholipid reductase, was detected in a cell free extract of the thermoacidophilic archaeon Thermoplasma acidophilum. The reduction activity was found in the membrane fraction, and FAD and NADH were required for the activity. The reductase was purified from a cell free extract by ultracentrifugation and four chromatographic steps. The purified enzyme showed a single band at ca. 45 kDa on SDS-PAGE, and catalyzed the formation of archaetidic acid from 2,3-di-O-geranylgeranylglyceryl phosphate. Furthermore, the enzyme also catalyzed the reduction of 2,3-di-O-geranylgeranylglyceryl phosphate analogues such as 2,3-di-O-phytyl-sn-glyceryl phosphate, 3-O-(2,3-di-O-phytyl-sn-glycero-phospho)-sn-glycerol and 2,3-di-O-phytyl-sn-glycero-phosphoethanolamine. The N-terminal 20 amino acid sequence of the purified enzyme was determined and was found to be identical to the sequence encoded by the Ta0516m gene of the T. acidophilum genome. The present study clearly demonstrates that 2,3-digeranylgeranylglycerophospholipid reductase is a membrane associated protein and that the hydrogenation of each double bond of 2,3-digeranylgeranylglycerophospholipids is catalyzed by a single enzyme. << Less
J. Biochem. 139:1073-1081(2006) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.