Reaction participants Show >> << Hide
- Name help_outline dihydrochanoclavine-I aldehyde Identifier CHEBI:65032 Charge 1 Formula C16H21N2O InChIKeyhelp_outline FZMIVISXXWRICN-SKNXHYNKSA-O SMILEShelp_outline C[NH2+][C@@H]1Cc2c[nH]c3cccc([C@H]1CC(C)C=O)c23 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,285 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline chanoclavine-I aldehyde Identifier CHEBI:71487 Charge 1 Formula C16H19N2O InChIKeyhelp_outline XFKPUSAZRRAPSC-HEESEWQSSA-O SMILEShelp_outline C[NH2+][C@@H]1Cc2c[nH]c3cccc([C@H]1\C=C(/C)C=O)c23 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,279 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:35947 | RHEA:35948 | RHEA:35949 | RHEA:35950 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Publications
-
A role for Old Yellow Enzyme in ergot alkaloid biosynthesis.
Cheng J.Z., Coyle C.M., Panaccione D.G., O'Connor S.E.
Ergot alkaloids, secondary metabolites produced by filamentous fungi, elicit a diverse array of pharmacological effects. The biosynthesis of this class of natural products has not been fully elucidated. Here we demonstrate that a homologue of Old Yellow Enzyme encoded in the Aspergillus fumigatus ... >> More
Ergot alkaloids, secondary metabolites produced by filamentous fungi, elicit a diverse array of pharmacological effects. The biosynthesis of this class of natural products has not been fully elucidated. Here we demonstrate that a homologue of Old Yellow Enzyme encoded in the Aspergillus fumigatus ergot gene cluster catalyzes reduction of the alpha,beta unsaturated alkene of chanoclavine-I aldehyde 3. This reduction, which yields dihydrochanoclavine aldehyde, facilitates an intramolecular reaction between a secondary amine and aldehyde to form the D ring of the ergot alkaloid structural framework. << Less
J Am Chem Soc 132:1776-1777(2010) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Ergot alkaloid biosynthesis in Aspergillus fumigatus: Conversion of chanoclavine-I aldehyde to festuclavine by the festuclavine synthase FgaFS in the presence of the old yellow enzyme FgaOx3.
Wallwey C., Matuschek M., Xie X.L., Li S.M.
Ergot alkaloids are toxins and important pharmaceuticals which are produced biotechnologically on an industrial scale. A putative gene fgaFS has been identified in the biosynthetic gene cluster of fumigaclavine C, an ergot alkaloid of the clavine-type. The deduced gene product FgaFS comprises 290 ... >> More
Ergot alkaloids are toxins and important pharmaceuticals which are produced biotechnologically on an industrial scale. A putative gene fgaFS has been identified in the biosynthetic gene cluster of fumigaclavine C, an ergot alkaloid of the clavine-type. The deduced gene product FgaFS comprises 290 amino acids with a molecular mass of about 32.1 kDa. The coding region of fgaFS consisting of three exons was amplified by PCR from a cDNA library of Aspergillus fumigatus, cloned into pQE70 and overexpressed in E. coli. The soluble monomeric His(6)-FgaFS was purified by affinity chromatography and used for enzyme assays. It has been shown that FgaFS is responsible for the conversion of chanoclavine-I aldehyde to festuclavine in the presence of the old yellow enzyme FgaOx3. The structure of festuclavine including the stereochemistry was unequivocally elucidated by NMR and MS analyses. Festuclavine formation was only observed when chanoclavine-I aldehyde was incubated with FgaOx3 and FgaFS simultaneously or as a tandem-reaction with a sequence of FgaOx3 before FgaFS. In the absence of FgaFS, two shunt products were formed and did not serve as substrates for FgaFS reaction. << Less
Org. Biomol. Chem. 8:3500-3508(2010) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
An old yellow enzyme gene controls the branch point between Aspergillus fumigatus and Claviceps purpurea ergot alkaloid pathways.
Coyle C.M., Cheng J.Z., O'Connor S.E., Panaccione D.G.
Ergot fungi in the genus Claviceps and several related fungal groups in the family Clavicipitaceae produce toxic ergot alkaloids. These fungi produce a variety of ergot alkaloids, including clavines as well as lysergic acid derivatives. Ergot alkaloids are also produced by the distantly related, o ... >> More
Ergot fungi in the genus Claviceps and several related fungal groups in the family Clavicipitaceae produce toxic ergot alkaloids. These fungi produce a variety of ergot alkaloids, including clavines as well as lysergic acid derivatives. Ergot alkaloids are also produced by the distantly related, opportunistic human pathogen Aspergillus fumigatus. However, this fungus produces festuclavine and fumigaclavines A, B, and C, which collectively differ from clavines of clavicipitaceous fungi in saturation of the last assembled of four rings in the ergoline ring structure. The two lineages are hypothesized to share early steps of the ergot alkaloid pathway before diverging at some point after the synthesis of the tricyclic intermediate chanoclavine-I. Disruption of easA, a gene predicted to encode a flavin-dependent oxidoreductase of the old yellow enzyme class, in A. fumigatus led to accumulation of chanoclavine-I and chanoclavine-I-aldehyde. Complementation of the A. fumigatus easA mutant with a wild-type allele from the same fungus restored the wild-type profile of ergot alkaloids. These data demonstrate that the product of A. fumigatus easA is required for incorporation of chanoclavine-I-aldehyde into more-complex ergot alkaloids, presumably by reducing the double bond conjugated to the aldehyde group, thus facilitating ring closure. Augmentation of the A. fumigatus easA mutant with a homologue of easA from Claviceps purpurea resulted in accumulation of ergot alkaloids typical of clavicipitaceous fungi (agroclavine, setoclavine, and its diastereoisomer isosetoclavine). These data indicate that functional differences in the easA-encoded old yellow enzymes of A. fumigatus and C. purpurea result in divergence of their respective ergot alkaloid pathways. << Less
Appl Environ Microbiol 76:3898-3903(2010) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.