Reaction participants Show >> << Hide
- Name help_outline 2-dehydro-3-deoxy-D-arabinonate Identifier CHEBI:16699 Charge -1 Formula C5H7O5 InChIKeyhelp_outline UQIGQRSJIKIPKZ-VKHMYHEASA-M SMILEShelp_outline OC[C@@H](O)CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2,5-dioxopentanoate Identifier CHEBI:58136 Charge -1 Formula C5H5O4 InChIKeyhelp_outline VHKNBDIQDAXGBL-UHFFFAOYSA-M SMILEShelp_outline [H]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:35807 | RHEA:35808 | RHEA:35809 | RHEA:35810 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Identification of the missing links in prokaryotic pentose oxidation pathways: evidence for enzyme recruitment.
Brouns S.J., Walther J., Snijders A.P., van de Werken H.J., Willemen H.L., Worm P., de Vos M.G., Andersson A., Lundgren M., Mazon H.F., van den Heuvel R.H., Nilsson P., Salmon L., de Vos W.M., Wright P.C., Bernander R., van der Oost J.
The pentose metabolism of Archaea is largely unknown. Here, we have employed an integrated genomics approach including DNA microarray and proteomics analyses to elucidate the catabolic pathway for D-arabinose in Sulfolobus solfataricus. During growth on this sugar, a small set of genes appeared to ... >> More
The pentose metabolism of Archaea is largely unknown. Here, we have employed an integrated genomics approach including DNA microarray and proteomics analyses to elucidate the catabolic pathway for D-arabinose in Sulfolobus solfataricus. During growth on this sugar, a small set of genes appeared to be differentially expressed compared with growth on D-glucose. These genes were heterologously overexpressed in Escherichia coli, and the recombinant proteins were purified and biochemically studied. This showed that D-arabinose is oxidized to 2-oxoglutarate by the consecutive action of a number of previously uncharacterized enzymes, including a D-arabinose dehydrogenase, a D-arabinonate dehydratase, a novel 2-keto-3-deoxy-D-arabinonate dehydratase, and a 2,5-dioxopentanoate dehydrogenase. Promoter analysis of these genes revealed a palindromic sequence upstream of the TATA box, which is likely to be involved in their concerted transcriptional control. Integration of the obtained biochemical data with genomic context analysis strongly suggests the occurrence of pentose oxidation pathways in both Archaea and Bacteria, and predicts the involvement of additional enzyme components. Moreover, it revealed striking genetic similarities between the catabolic pathways for pentoses, hexaric acids, and hydroxyproline degradation, which support the theory of metabolic pathway genesis by enzyme recruitment. << Less
J. Biol. Chem. 281:27378-27388(2006) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily.
Brouns S.J., Barends T.R., Worm P., Akerboom J., Turnbull A.P., Salmon L., van der Oost J.
The archaeon Sulfolobus solfataricus converts d-arabinose to 2-oxoglutarate by an enzyme set consisting of two dehydrogenases and two dehydratases. The third step of the pathway is catalyzed by a novel 2-keto-3-deoxy-D-arabinonate dehydratase (KdaD). In this study, the crystal structure of the enz ... >> More
The archaeon Sulfolobus solfataricus converts d-arabinose to 2-oxoglutarate by an enzyme set consisting of two dehydrogenases and two dehydratases. The third step of the pathway is catalyzed by a novel 2-keto-3-deoxy-D-arabinonate dehydratase (KdaD). In this study, the crystal structure of the enzyme has been solved to 2.1 A resolution. The enzyme forms an oval-shaped ring of four subunits, each consisting of an N-terminal domain with a four-stranded beta-sheet flanked by two alpha-helices, and a C-terminal catalytic domain with a fumarylacetoacetate hydrolase (FAH) fold. Crystal structures of complexes of the enzyme with magnesium or calcium ions and either a substrate analog 2-oxobutyrate, or the aldehyde enzyme product 2,5-dioxopentanoate revealed that the divalent metal ion in the active site is coordinated octahedrally by three conserved carboxylate residues, a water molecule, and both the carboxylate and the oxo groups of the substrate molecule. An enzymatic mechanism for base-catalyzed dehydration is proposed on the basis of the binding mode of the substrate to the metal ion, which suggests that the enzyme enhances the acidity of the protons alpha to the carbonyl group, facilitating their abstraction by glutamate 114. A comprehensive structural comparison of members of the FAH superfamily is presented and their evolution is discussed, providing a basis for functional investigations of this largely unexplored protein superfamily. << Less