Enzymes
UniProtKB help_outline | 4 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (S)-5'-oxoaverantin Identifier CHEBI:77933 Charge -1 Formula C20H17O8 InChIKeyhelp_outline JJDSVOQKAOJVOK-LBPRGKRZSA-M SMILEShelp_outline CC(=O)CCC[C@H](O)c1c(O)cc2C(=O)c3cc([O-])cc(O)c3C(=O)c2c1O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (1'S,5'S)-averufin Identifier CHEBI:71537 (CAS: 14016-29-6) help_outline Charge 0 Formula C20H16O7 InChIKeyhelp_outline RYFFZJHGQCKWMV-YUNKPMOVSA-N SMILEShelp_outline [H][C@]12CCC[C@](C)(Oc3cc4C(=O)c5cc(O)cc(O)c5C(=O)c4c(O)c13)O2 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:35671 | RHEA:35672 | RHEA:35673 | RHEA:35674 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Involvement of two cytosolic enzymes and a novel intermediate, 5'-oxoaverantin, in the pathway from 5'-hydroxyaverantin to averufin in aflatoxin biosynthesis.
Sakuno E., Yabe K., Nakajima H.
During aflatoxin biosynthesis, 5'-hydroxyaverantin (HAVN) is converted to averufin (AVR). Although we had previously suggested that this occurs in one enzymatic step, we demonstrate here that this conversion is composed of two enzymatic steps by showing that the two enzyme activities in the cytoso ... >> More
During aflatoxin biosynthesis, 5'-hydroxyaverantin (HAVN) is converted to averufin (AVR). Although we had previously suggested that this occurs in one enzymatic step, we demonstrate here that this conversion is composed of two enzymatic steps by showing that the two enzyme activities in the cytosol fraction of Aspergillus parasiticus were clearly separated by Mono Q column chromatography. An enzyme, HAVN dehydrogenase, catalyzes the first reaction from HAVN to a novel intermediate, another new enzyme catalyzes the next reaction from the intermediate to AVR, and the intermediate is a novel substance, 5'-oxoaverantin (OAVN), which was determined by physicochemical methods. We also purified both of the enzymes, HAVN dehydrogenase and OAVN cyclase, from the cytosol fraction of A. parasiticus by using ammonium sulfate fractionation and successive chromatographic steps. The HAVN dehydrogenase is a homodimer composed of 28-kDa subunits, and it requires NAD, but not NADP, as a cofactor for its activity. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of tryptic peptides of the purified HAVN dehydrogenase revealed that this enzyme coincides with a protein deduced from the adhA gene in the aflatoxin gene cluster of A. parasiticus. Also, the OAVN cyclase enzyme is a homodimer composed of 79-kDa subunits which does not require any cofactor for its activity. Further characterizations of both enzymes were performed. << Less
Appl. Environ. Microbiol. 69:6418-6426(2003) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Aspergillus parasiticus cyclase catalyzes two dehydration steps in aflatoxin biosynthesis.
Sakuno E., Wen Y., Hatabayashi H., Arai H., Aoki C., Yabe K., Nakajima H.
In the aflatoxin biosynthetic pathway, 5'-oxoaverantin (OAVN) cyclase, the cytosolic enzyme, catalyzes the reaction from OAVN to (2'S,5'S)-averufin (AVR) (E. Sakuno, K. Yabe, and H. Nakajima, Appl. Environ. Microbiol. 69:6418-6426, 2003). Interestingly, the N-terminal 25-amino-acid sequence of OAV ... >> More
In the aflatoxin biosynthetic pathway, 5'-oxoaverantin (OAVN) cyclase, the cytosolic enzyme, catalyzes the reaction from OAVN to (2'S,5'S)-averufin (AVR) (E. Sakuno, K. Yabe, and H. Nakajima, Appl. Environ. Microbiol. 69:6418-6426, 2003). Interestingly, the N-terminal 25-amino-acid sequence of OAVN cyclase completely matched an internal sequence of the versiconal (VHOH) cyclase that was deduced from its gene (vbs). The purified OAVN cyclase also catalyzed the reaction from VHOH to versicolorin B (VB). In a competition experiment using the cytosol fraction of Aspergillus parasiticus, a high concentration of VHOH inhibited the enzyme reaction from OAVN to AVR, and instead VB was newly formed. The recombinant Vbs protein, which was expressed in Pichia pastoris, showed OAVN cyclase activity, as well as VHOH cyclase activity. A mutant of A. parasiticus SYS-4 (= NRRL 2999) with vbs deleted accumulated large amounts of OAVN, 5'-hydroxyaverantin, averantin, AVR, and averufanin in the mycelium. These results indicated that the cyclase encoded by the vbs gene is also involved in the reaction from OAVN to AVR in aflatoxin biosynthesis. Small amounts of VHOH, VB, and aflatoxins also accumulated in the same mutant, and this accumulation may have been due to an unknown enzyme(s) not involved in aflatoxin biosynthesis. This is the first report of one enzyme catalyzing two different reactions in a pathway of secondary metabolism. << Less
Appl. Environ. Microbiol. 71:2999-3006(2005) [PubMed] [EuropePMC]