Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline (4R)-hydroxysphinganine Identifier CHEBI:64124 Charge 1 Formula C18H40NO3 InChIKeyhelp_outline AERBNCYCJBRYDG-KSZLIROESA-O SMILEShelp_outline CCCCCCCCCCCCCC[C@@H](O)[C@@H](O)[C@@H]([NH3+])CO 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a fatty acyl-CoA Identifier CHEBI:77636 Charge -4 Formula C22H31N7O17P3SR SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an N-acyl-(4R)-4-hydroxysphinganine Identifier CHEBI:31998 Charge 0 Formula C19H38NO4R SMILEShelp_outline CCCCCCCCCCCCCC[C@@H](O)[C@@H](O)[C@H](CO)NC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 38 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:35651 | RHEA:35652 | RHEA:35653 | RHEA:35654 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p.
Guillas I., Kirchman P.A., Chuard R., Pfefferli M., Jiang J.C., Jazwinski S.M., Conzelmann A.
Lag1p and Lac1p are two highly homologous membrane proteins of the endoplasmic reticulum (ER). When both genes are deleted, cells cannot transport glycosylphosphatidylinositol (GPI)-anchored proteins from the ER to the Golgi at a normal rate. Here we show that microsomes or detergent extracts from ... >> More
Lag1p and Lac1p are two highly homologous membrane proteins of the endoplasmic reticulum (ER). When both genes are deleted, cells cannot transport glycosylphosphatidylinositol (GPI)-anchored proteins from the ER to the Golgi at a normal rate. Here we show that microsomes or detergent extracts from lag1lac1 double mutants lack an activity transferring C26 fatty acids from C26-coenzyme A onto dihydrosphingosine or phytosphingosine. As a consequence, in intact cells, the normal ceramides and inositolphosphorylceramides are drastically reduced. lag1lac1 cells compensate for the lack of normal sphingolipids by making increased amounts of C26 fatty acids, which become incorporated into glycerophospholipids. They also contain 20-to 25-fold more free long chain bases than wild type and accumulate very large amounts of abnormally polar ceramides. They make small amounts of abnormal mild base-resistant inositolphospholipids. The lipid remodelling of GPI-anchored proteins is severely compromised in lag1lac1 double mutants since only few and mostly abnormal ceramides are incorporated into the GPI anchors. The participation of Lag1p and Lac1p in ceramide synthesis may explain their role in determining longevity. << Less
EMBO J. 20:2655-2665(2001) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.
-
Biosynthesis of the anti-lipid-microdomain sphingoid base 4,14-sphingadiene by the ceramide desaturase FADS3.
Jojima K., Edagawa M., Sawai M., Ohno Y., Kihara A.
Sphingolipids are multifunctional lipids. Among the sphingolipid-component sphingoid bases, 4,14-sphingadiene (SPD) is unique such that it has a cis double bond with a bent structure. Although SPD was discovered half a century ago, its tissue distribution, biosynthesis, and degradation remain poor ... >> More
Sphingolipids are multifunctional lipids. Among the sphingolipid-component sphingoid bases, 4,14-sphingadiene (SPD) is unique such that it has a cis double bond with a bent structure. Although SPD was discovered half a century ago, its tissue distribution, biosynthesis, and degradation remain poorly understood. Here, we established a specific and quantitative method for SPD measurement and found that SPD exists in a wide range of mammalian tissues. SPD was especially abundant in kidney, where the amount of SPD was ~2/3 of sphingosine, the most abundant sphingoid base in mammals. Although SPD is metabolized to ceramides and SPD 1-phosphate with almost the same efficiency as sphingosine, it is less susceptible to degradation by a cleavage reaction, at least in vitro. We identified the fatty acid desaturase family protein FADS3 as a ceramide desaturase that produces SPD ceramides by desaturating ceramides containing sphingosine. SPD sphingolipids were preferentially localized outside lipid microdomains, suggesting that SPD has different functions compared to other sphingoid bases in the formation of lipid microdomains. In summary, we revealed the biosynthesis and degradation pathways of SPD and its characteristic membrane localization. Our findings contribute to the elucidation of the molecular mechanism underlying the generation of sphingolipid diversity. << Less
FASEB J. 34:3318-3335(2020) [PubMed] [EuropePMC]
This publication is cited by 24 other entries.
-
Lag1p and Lac1p are essential for the acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae.
Schorling S., Vallee B., Barz W.P., Riezman H., Oesterhelt D.
Lag1p and Lac1p are two homologous transmembrane proteins of the endoplasmic reticulum in Saccharomyces cerevisiae. Homologous genes have been found in a wide variety of eukaryotes. In yeast, both genes, LAC1 and LAG1, are required for efficient endoplasmic reticulum-to-Golgi transport of glycosyl ... >> More
Lag1p and Lac1p are two homologous transmembrane proteins of the endoplasmic reticulum in Saccharomyces cerevisiae. Homologous genes have been found in a wide variety of eukaryotes. In yeast, both genes, LAC1 and LAG1, are required for efficient endoplasmic reticulum-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins. In this study, we show that lag1 Delta lac1 Delta cells have reduced sphingolipid levels due to a block of the fumonisin B1-sensitive and acyl-CoA-dependent ceramide synthase reaction. The sphingolipid synthesis defect in lag1 Delta lac1 Delta cells can be partially corrected by overexpression of YPC1 or YDC1, encoding ceramidases that have been reported to have acyl-CoA-independent ceramide synthesis activity. Quadruple mutant cells (lag1 Delta lac1 Delta ypc1 Delta ydc1 Delta) do not make any sphingolipids, but are still viable probably because they produce novel lipids. Moreover, lag1 Delta lac1 Delta cells are resistant to aureobasidin A, an inhibitor of the inositolphosphorylceramide synthase, suggesting that aureobasidin A may be toxic because it leads to increased ceramide levels. Based on these data, LAG1 and LAC1 are the first genes to be identified that are required for the fumonisin B1-sensitive and acyl-CoA-dependent ceramide synthase reaction. << Less
Mol. Biol. Cell 12:3417-3427(2001) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.