Reaction participants Show >> << Hide
- Name help_outline N-ethylmaleimide Identifier CHEBI:44485 (Beilstein: 112448; CAS: 128-53-0) help_outline Charge 0 Formula C6H7NO2 InChIKeyhelp_outline HDFGOPSGAURCEO-UHFFFAOYSA-N SMILEShelp_outline CCN1C(=O)C=CC1=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-ethylsuccinimide Identifier CHEBI:44348 (Beilstein: 116095; CAS: 2314-78-5) help_outline Charge 0 Formula C6H9NO2 InChIKeyhelp_outline GHAZCVNUKKZTLG-UHFFFAOYSA-N SMILEShelp_outline CCN1C(=O)CCC1=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:35523 | RHEA:35524 | RHEA:35525 | RHEA:35526 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Characterization of yqjM, an old yellow enzyme homolog from Bacillus subtilis involved in the oxidative stress response.
Fitzpatrick T.B., Amrhein N., Macheroux P.
In this paper, we demonstrate that a protein from Bacillus subtilis (YqjM) shares many characteristic biochemical properties with the homologous yeast Old Yellow Enzyme (OYE); the enzyme binds FMN tightly but noncovalently, preferentially uses NADPH as a source of reducing equivalents, and forms c ... >> More
In this paper, we demonstrate that a protein from Bacillus subtilis (YqjM) shares many characteristic biochemical properties with the homologous yeast Old Yellow Enzyme (OYE); the enzyme binds FMN tightly but noncovalently, preferentially uses NADPH as a source of reducing equivalents, and forms charge transfer complexes with phenolic compounds such as p-hydroxybenzaldehyde. Like yeast OYE and other members of the family, YqjM catalyzes the reduction of the double bond of an array of alpha,beta-unsaturated aldehydes and ketones including nitroester and nitroaromatic compounds. Although yeast OYE was the first member of this family to be discovered in 1933 and was the first flavoenzyme ever to be isolated, the physiological role of the family still remains obscure. The finding that alpha,beta-unsaturated compounds are substrates provoked speculation that the OYE family might be involved in reductive degradation of xenobiotics or lipid peroxidation products. Here, for the first time, we demonstrate on the protein level that whereas YqjM shows a basal level of expression in B. subtilis, the addition of the toxic xenobiotic, trinitrotoluene, leads to a rapid induction of the protein in vivo denoting a role in detoxification. Moreover, we show that YqjM is rapidly induced in response to oxidative stress as exerted by hydrogen peroxide, demonstrating a potential physiological role for this enigmatic class of proteins. << Less
J. Biol. Chem. 278:19891-19897(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
4 Pro-R hydrogen of NADPH was abstracted for enzymatic hydride transfer by N-ethylmaleimide-reductase of Yarrowia lipolytica.
Mizugaki M., Miura K., Yamamoto H., Kayaba-Nakazawa M., Edo K., Tomioka Y., Hishinuma T.
We studied the steric course of the reaction catalyzed by the N-ethylmaleimide (NEM) reductase of Yarrowia (Candida) lipolytica (Y. lipolytica), using 4R-[4-2H1]NADPH and 4S-[4-2H1]NADPH as cofactors and N-ethylcitraconimide as substrate. Active substrates and inhibitors of NEM reductase and its s ... >> More
We studied the steric course of the reaction catalyzed by the N-ethylmaleimide (NEM) reductase of Yarrowia (Candida) lipolytica (Y. lipolytica), using 4R-[4-2H1]NADPH and 4S-[4-2H1]NADPH as cofactors and N-ethylcitraconimide as substrate. Active substrates and inhibitors of NEM reductase and its subcellular distribution were also investigated to clarify the biochemical properties of this enzyme. NEM reductase catalyzes the reduction of N-ethylmaleimide to N-ethylsuccinimide with NAD(P)H as the cofactor. Several maleimide and cyclopentenone derivatives tested were also active substrates for NEM reductase of Y. lipolytica. Some pyrazolone derivatives, particularly 1-phenyl-5-pyrazolone, were found to be effective inhibitors of NEM reductase. Subcellular localization of NEM reductase was carried out using protoplast formation and differential centrifugation. Ninety-eight percent of the NEM reductase activity was recovered in the cytosolic fraction, indicating that NEM reductase in Y. lipolytica was the cytosolic enzyme. We also determined the stereochemical specificity of the reduction of N-ethylcitraconimide by NEM reductase in Y. lipolytica, showing that 4 Pro-R hydrogen of NADPH was abstracted for enzymatic hydride transfer by NEM reductase, and two hydrogen atoms from NADPH and H2O added to opposite faces of the double bond of N-ethylcitraconimide. << Less
Tohoku J Exp Med 181:447-457(1997) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.