Reaction participants Show >> << Hide
- Name help_outline S,S-dimethyl-β-propiothetin Identifier CHEBI:16457 (CAS: 7314-30-9) help_outline Charge 0 Formula C5H10O2S InChIKeyhelp_outline DFPOZTRSOAQFIK-UHFFFAOYSA-N SMILEShelp_outline C[S+](C)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (6S)-5,6,7,8-tetrahydrofolate Identifier CHEBI:57453 (Beilstein: 10223255) help_outline Charge -2 Formula C19H21N7O6 InChIKeyhelp_outline MSTNYGQPCMXVAQ-RYUDHWBXSA-L SMILEShelp_outline Nc1nc2NC[C@H](CNc3ccc(cc3)C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)Nc2c(=O)[nH]1 2D coordinates Mol file for the small molecule Search links Involved in 41 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-(methylsulfanyl)propanoate Identifier CHEBI:49016 (Beilstein: 7125938) help_outline Charge -1 Formula C4H7O2S InChIKeyhelp_outline CAOMCZAIALVUPA-UHFFFAOYSA-M SMILEShelp_outline CSCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (6S)-5-methyl-5,6,7,8-tetrahydrofolate Identifier CHEBI:18608 (Beilstein: 10132446) help_outline Charge -2 Formula C20H23N7O6 InChIKeyhelp_outline ZNOVTXRBGFNYRX-STQMWFEESA-L SMILEShelp_outline CN1[C@@H](CNc2ccc(cc2)C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)CNc2nc(N)[nH]c(=O)c12 2D coordinates Mol file for the small molecule Search links Involved in 15 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:35467 | RHEA:35468 | RHEA:35469 | RHEA:35470 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi.
Reisch C.R., Moran M.A., Whitman W.B.
The ubiquitous algal metabolite dimethylsulfoniopropionate (DMSP) is a major source of carbon and reduced sulfur for marine bacteria. Recently, the enzyme responsible for the demethylation of DMSP, designated DmdA, was identified, and homologs were found to be common in marine bacterioplankton cel ... >> More
The ubiquitous algal metabolite dimethylsulfoniopropionate (DMSP) is a major source of carbon and reduced sulfur for marine bacteria. Recently, the enzyme responsible for the demethylation of DMSP, designated DmdA, was identified, and homologs were found to be common in marine bacterioplankton cells. The recombinant DmdA proteins from the cultured marine bacteria Pelagibacter ubique HTCC1062 and Silicibacter pomeroyi DSS-3 were purified with a three-step procedure using anion-exchange, hydrophobic interaction, and hydroxyapatite chromatographies. The P. ubique enzyme possessed an M(r) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 38,500. Under nondenaturing conditions, the M(r) was 68,000, suggesting that the enzyme was likely to be a dimer. The purified enzyme exhibited strict substrate specificity for DMSP, as DmdA from both S. pomeroyi and P. ubique possessed no detectable demethylase activity with glycine betaine, dimethyl glycine, methylmercaptopropionate, methionine, or dimethylsulfonioacetate. Less than 1% activity was found with dimethylsulfoniobutanoate and dimethylsulfoniopentanoate. The apparent K(m)s for DMSP were 13.2 +/- 2.0 and 5.4 +/-2.3 mM for the P. ubique and S. pomeroyi enzymes, respectively. In cell extracts of S. pomeroyi DSS-3, the apparent K(m) for DMSP was 8.6 +/-1.2 mM, similar to that of purified recombinant DmdA. The intracellular concentration of DMSP in chemostat-grown S. pomeroyi DSS-3 was 70 mM. These results suggest that marine bacterioplankton may actively accumulate DMSP to osmotically significant concentrations that favor near-maximal rates of DMSP demethylation activity. << Less
-
Tetrahydrofolate serves as a methyl acceptor in the demethylation of dimethylsulfoniopropionate in cell extracts of sulfate-reducing bacteria.
Jansen M., Hansen T.A.
Tetrahydrofolate was shown to function as a methyl acceptor in the anaerobic demethylation of dimethylsulfoniopropionate to methylthiopropionate in cell extracts of the sulfate-reducing bacterium strain WN. Dimethylsulfoniopropionate-dependent activities were 0.56 micromol methyltetrahydrofolate m ... >> More
Tetrahydrofolate was shown to function as a methyl acceptor in the anaerobic demethylation of dimethylsulfoniopropionate to methylthiopropionate in cell extracts of the sulfate-reducing bacterium strain WN. Dimethylsulfoniopropionate-dependent activities were 0.56 micromol methyltetrahydrofolate min-1 (mg protein)-1 and were higher than required to explain the growth rate of strain WN on dimethylsulfoniopropionate. The reaction did not require ATP or reductive activation by titanium(III)-nitrilotriacetic acid. Preincubation of the extract under air significantly decreased the activity (35% loss in 3 h). Three other dimethylsulfoniopropionate-demethylating sulfate reducers, Desulfobacterium niacini, Desulfobacterium vacuolatum, and Desulfobacterium strain PM4, had dimethylsulfoniopropionate:tetrahydrofolate methyltransferase activities of 0.16, 0.05, and 0.24 micromol min-1 (mg protein)-1, respectively. No methyltransferase activity to tetrahydrofolate was found with betaine as a substrate, not even in extracts of betaine-grown cells of these sulfate reducers. Dimethylsulfoniopropionate demethylation in cell extracts of strain WN was completely inhibited by 0.5 mM propyl iodide; in the light, the inhibition was far less strong, indicating involvement of a corrinoid-dependent methyltransferase. << Less