Reaction participants Show >> << Hide
- Name help_outline IDP Identifier CHEBI:58280 (Beilstein: 5786306) help_outline Charge -3 Formula C10H11N4O11P2 InChIKeyhelp_outline JPXZQMKKFWMMGK-KQYNXXCUSA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1cnc2c1nc[nH]c2=O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline IMP Identifier CHEBI:58053 Charge -2 Formula C10H11N4O8P InChIKeyhelp_outline GRSZFWQUAKGDAV-KQYNXXCUSA-L SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])([O-])=O)O[C@H]([C@@H]1O)n1cnc2c1nc[nH]c2=O 2D coordinates Mol file for the small molecule Search links Involved in 20 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:35207 | RHEA:35208 | RHEA:35209 | RHEA:35210 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Metal determines efficiency and substrate specificity of the nuclear NUDIX decapping proteins X29 and H29K (Nudt16).
Peculis B.A., Reynolds K., Cleland M.
The Xenopus X29 protein was identified by its high affinity binding to U8 small nucleolar RNA, a small nucleolar RNA required for ribosome biogenesis. X29 and its human homologue H29K (Nudt16) are nuclear nucleoside diphosphatase proteins localized within foci in the nucleolus and nucleoplasm. The ... >> More
The Xenopus X29 protein was identified by its high affinity binding to U8 small nucleolar RNA, a small nucleolar RNA required for ribosome biogenesis. X29 and its human homologue H29K (Nudt16) are nuclear nucleoside diphosphatase proteins localized within foci in the nucleolus and nucleoplasm. These proteins can remove m(7)G and m(227)G caps from RNAs, rendering them substrates for 5'-3' exonucleases for degradation in vivo. Here, a more complete characterization of these metal-dependent decapping proteins demonstrates that the metal identity determines both the efficiency of decapping and the RNA substrate specificity. In Mg(+2) the proteins hydrolyze the 5' cap from only one RNA substrate: U8 small nucleolar RNA. However, in the presence of Mn(+2) or Co(+2) all RNAs are substrates and the decapping efficiency is higher. The x-ray crystal structure of X29 facilitated structure-based mutagenesis. Mutation of single amino acids coordinating metal in the active site yielded mutant proteins confirming essential residues. In vitro assays with purified components are consistent with a lack of protein turnover, apparently due to an inability of the protein to release the decapped RNA, implicating critical in vivo interacting factors. Collectively, these studies indicate that the metal that binds the X29/H29K proteins in vivo may determine whether these decapping proteins function solely as a negative regulator of ribosome biogenesis or can decap a wider variety of nuclear-limited RNAs. With the potential broader RNA substrate specificity, X29/H29K may be the nuclear counterparts of the cytoplasmic decapping machinery, localized in specialized bodies involved in RNA decay. << Less
J. Biol. Chem. 282:24792-24805(2007) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Purification and properties of human placental ATP diphosphohydrolase.
Christoforidis S., Papamarcaki T., Galaris D., Kellner R., Tsolas O.
ATP diphosphohydrolase activity (ATP-DPH) has been previously identified in the particulate fraction of human term placenta [Papamarcaki, T. & Tsolas, O. (1990) Mol. Cell. Biochem. 97, 1-8]. In the present study we have purified to homogeneity and characterized this activity. A 260-fold purificati ... >> More
ATP diphosphohydrolase activity (ATP-DPH) has been previously identified in the particulate fraction of human term placenta [Papamarcaki, T. & Tsolas, O. (1990) Mol. Cell. Biochem. 97, 1-8]. In the present study we have purified to homogeneity and characterized this activity. A 260-fold purification has been obtained by solubilization of the particulate fraction and subsequent chromatography on DEAE Sepharose CL-6B and 5'-AMP Sepharose 4B. The preparation has been shown to be free of alkaline phosphatase even though the placental extract is rich in this activity. The purified enzyme is a glycoprotein and migrates as a single broad band of 82 kDa on SDS/PAGE. The same band is obtained after photoaffinity labeling of the enzyme with 8-azido-[alpha-32P]ATP. The enzyme has a broad substrate specificity, hydrolyzing triphosphonucleosides and diphosphonucleosides but not monophosphonucleosides or other phosphate esters. The activity is dependent on the addition of divalent cations Ca2+ or Mg2+. The Km values for ATP and ADP were determined to be 10 microM and 20 microM, respectively. Maximum activity was found at pH 7.0-7.5 with ATP as substrate, and pH 7.5-8.0 with ADP. The enzymic activity is inhibited by NaN3, NaF, adenosine 5'-[beta,gamma-imido]triphosphate and adenosine 5'-[alpha,beta-methylene]triphosphate. Protein sequence analysis showed ATP-DPH to be N-terminally blocked. Partial internal amino acid sequence information was obtained after chymotryptic cleavage and identified a unique sequence with no significant similarity to known proteins. ATP-DPH activity has been reported to be implicated in the prevention of platelet aggregation, hydrolysing ADP to AMP and thus preventing blood clotting. << Less
Eur. J. Biochem. 234:66-74(1995) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.
-
Structural basis for the specificity of human NUDT16 and its regulation by inosine monophosphate.
Tresaugues L., Lundbaeck T., Welin M., Flodin S., Nyman T., Silvander C., Graeslund S., Nordlund P.
Human NUDT16 is a member of the NUDIX hydrolase superfamily. After having been initially described as an mRNA decapping enzyme, recent studies conferred it a role as an "housecleaning" enzyme specialized in the removal of hazardous (deoxy)inosine diphosphate from the nucleotide pool. Here we prese ... >> More
Human NUDT16 is a member of the NUDIX hydrolase superfamily. After having been initially described as an mRNA decapping enzyme, recent studies conferred it a role as an "housecleaning" enzyme specialized in the removal of hazardous (deoxy)inosine diphosphate from the nucleotide pool. Here we present the crystal structure of human NUDT16 both in its apo-form and in complex with its product inosine monophosphate (IMP). NUDT16 appears as a dimer whose formation generates a positively charged trench to accommodate substrate-binding. Complementation of the structural data with detailed enzymatic and biophysical studies revealed the determinants of substrate recognition and particularly the importance of the substituents in position 2 and 6 on the purine ring. The affinity for the IMP product, harboring a carbonyl in position 6 on the base, compared to purine monophosphates lacking a H-bond acceptor in this position, implies a catalytic cycle whose rate is primarily regulated by the product-release step. Finally, we have also characterized a phenomenon of inhibition by the product of the reaction, IMP, which might exclude non-deleterious nucleotides from NUDT16-mediated hydrolysis regardless of their cellular concentration. Taken together, this study details structural and regulatory mechanisms explaining how substrates are selected for hydrolysis by human NUDT16. << Less
PLoS ONE 10:E0131507-E0131507(2015) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
NUDT16 is a (deoxy)inosine diphosphatase, and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest.
Iyama T., Abolhassani N., Tsuchimoto D., Nonaka M., Nakabeppu Y.
Nucleotides function in a variety of biological reactions; however, they can undergo various chemical modifications. Such modified nucleotides may be toxic to cells if not eliminated from the nucleotide pools. We performed a screen for modified-nucleotide binding proteins and identified human nucl ... >> More
Nucleotides function in a variety of biological reactions; however, they can undergo various chemical modifications. Such modified nucleotides may be toxic to cells if not eliminated from the nucleotide pools. We performed a screen for modified-nucleotide binding proteins and identified human nucleoside diphosphate linked moiety X-type motif 16 (NUDT16) protein as an inosine triphosphate (ITP)/xanthosine triphosphate (XTP)/GTP-binding protein. Recombinant NUDT16 hydrolyzes purine nucleoside diphosphates to the corresponding nucleoside monophosphates. Among 29 nucleotides examined, the highest k(cat)/K(m) values were for inosine diphosphate (IDP) and deoxyinosine diphosphate (dIDP). Moreover, NUDT16 moderately hydrolyzes (deoxy)inosine triphosphate ([d]ITP). NUDT16 is mostly localized in the nucleus, and especially in the nucleolus. Knockdown of NUDT16 in HeLa MR cells caused cell cycle arrest in S-phase, reduced cell proliferation, increased accumulation of single-strand breaks in nuclear DNA as well as increased levels of inosine in RNA. We thus concluded that NUDT16 is a (deoxy)inosine diphosphatase that may function mainly in the nucleus to protect cells from deleterious effects of (d)ITP. << Less
Nucleic Acids Res. 38:4834-4843(2010) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
Comments
RHEA:35207 part of RHEA:77735