Enzymes
UniProtKB help_outline | 451 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline choline Identifier CHEBI:15354 (Beilstein: 1736748; CAS: 62-49-7) help_outline Charge 1 Formula C5H14NO InChIKeyhelp_outline OEYIOHPDSNJKLS-UHFFFAOYSA-N SMILEShelp_outline C[N+](C)(C)CCO 2D coordinates Mol file for the small molecule Search links Involved in 56 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetaldehyde Identifier CHEBI:15343 (Beilstein: 505984; CAS: 75-07-0) help_outline Charge 0 Formula C2H4O InChIKeyhelp_outline IKHGUXGNUITLKF-UHFFFAOYSA-N SMILEShelp_outline [H]C(C)=O 2D coordinates Mol file for the small molecule Search links Involved in 47 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline trimethylamine Identifier CHEBI:58389 Charge 1 Formula C3H10N InChIKeyhelp_outline GETQZCLCWQTVFV-UHFFFAOYSA-O SMILEShelp_outline C[NH+](C)C 2D coordinates Mol file for the small molecule Search links Involved in 16 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:35095 | RHEA:35096 | RHEA:35097 | RHEA:35098 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme.
Craciun S., Balskus E.P.
Choline and trimethylamine (TMA) are small molecules that play central roles in biological processes throughout all kingdoms of life. These ubiquitous metabolites are linked through a single biochemical transformation, the conversion of choline to TMA by anaerobic microorganisms. This metabolic ac ... >> More
Choline and trimethylamine (TMA) are small molecules that play central roles in biological processes throughout all kingdoms of life. These ubiquitous metabolites are linked through a single biochemical transformation, the conversion of choline to TMA by anaerobic microorganisms. This metabolic activity, which contributes to methanogenesis and human disease, has been known for over a century but has eluded genetic and biochemical characterization. We have identified a gene cluster responsible for anaerobic choline degradation within the genome of a sulfate-reducing bacterium and verified its function using both a genetic knockout strategy and heterologous expression in Escherichia coli. Bioinformatics and electron paramagnetic resonance (EPR) spectroscopy revealed the involvement of a C-N bond cleaving glycyl radical enzyme in TMA production, which is unprecedented chemistry for this enzyme family. Our discovery provides the predictive capabilities needed to identify choline utilization clusters in numerous bacterial genomes, underscoring the importance and prevalence of this metabolic activity within the human microbiota and the environment. << Less
Proc. Natl. Acad. Sci. U.S.A. 109:21307-21312(2012) [PubMed] [EuropePMC]