Enzymes
UniProtKB help_outline | 19 proteins |
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline L-arginine Identifier CHEBI:32682 Charge 1 Formula C6H15N4O2 InChIKeyhelp_outline ODKSFYDXXFIFQN-BYPYZUCNSA-O SMILEShelp_outline NC(=[NH2+])NCCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 72 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-ornithine Identifier CHEBI:46911 Charge 1 Formula C5H13N2O2 InChIKeyhelp_outline AHLPHDHHMVZTML-BYPYZUCNSA-O SMILEShelp_outline [NH3+]CCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 50 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:34991 | RHEA:34992 | RHEA:34993 | RHEA:34994 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline |
Publications
-
Characterization of the arcD arginine:ornithine exchanger of Pseudomonas aeruginosa. Localization in the cytoplasmic membrane and a topological model.
Bourdineaud J.P., Heierli D., Gamper M., Verhoogt H.J., Driessen A.J., Konings W.N., Lazdunski C., Haas D.
The arcDABC operon of Pseudomonas aeruginosa encodes the enzymes of the arginine deiminase pathway and is induced by oxygen limitation. The arcD gene specifies a 53-kDa protein with arginine: ornithine exchange activity. The ArcD protein of P. aeruginosa, like the LysI lysine transporter of Coryne ... >> More
The arcDABC operon of Pseudomonas aeruginosa encodes the enzymes of the arginine deiminase pathway and is induced by oxygen limitation. The arcD gene specifies a 53-kDa protein with arginine: ornithine exchange activity. The ArcD protein of P. aeruginosa, like the LysI lysine transporter of Corynebacterium glutamicum, has 13 hydrophobic regions which could span the cytoplasmic membrane. Fusion of a Caa (colicin A) epitope to the N-terminal part of ArcD permitted the localization, by immunoblotting, of the hybrid protein in the inner membrane of P. aeruginosa. Fusion of PhoA (alkaline phosphatase) to the very C terminus of ArcD produced another hybrid protein, which exhibited PhoA activity. Both ArcD hybrid proteins retained arginine transport activity and served to support a topological model which proposes that the N terminus is oriented toward the cytoplasm and the C terminus faces the periplasm. Further ArcD-PhoA fusions were consistent with this model. When the Caa epitope was fused to a C-terminal ArcD fragment consisting of only 5 hydrophobic domains, the resulting hybrid protein could be recovered intact from the inner membrane, suggesting that the C-terminal part of ArcD contains sufficient information for insertion into the membrane. This study illustrates the utility of the Caa epitope to tag membrane proteins. << Less
-
ArcD1 and ArcD2 arginine/ornithine exchangers encoded in the arginine deiminase pathway gene cluster of Lactococcus lactis.
Noens E.E., Kaczmarek M.B., Zygo M., Lolkema J.S.
<h4>Unlabelled</h4>The arginine deiminase (ADI) pathway gene cluster in Lactococcus lactis contains two copies of a gene encoding an l-arginine/l-ornithine exchanger, the arcD1 and arcD2 genes. The physiological function of ArcD1 and ArcD2 was studied by deleting the two genes. Deletion of arcD1 r ... >> More
<h4>Unlabelled</h4>The arginine deiminase (ADI) pathway gene cluster in Lactococcus lactis contains two copies of a gene encoding an l-arginine/l-ornithine exchanger, the arcD1 and arcD2 genes. The physiological function of ArcD1 and ArcD2 was studied by deleting the two genes. Deletion of arcD1 resulted in loss of the growth advantage observed in the presence of high l-arginine in different growth media. Uptake of l-arginine and l-ornithine by resting cells was reduced to the low level observed for an ArcD1/ArcD2 double deletion mutant. Deletion of the arcD2 gene did not affect the growth enhancement, and uptake activities were slightly reduced. Nevertheless, recombinant expression of ArcD2 in the ArcD1/ArcD2 double mutant did recover the growth advantage. Kinetic characterization of ArcD1 and ArcD2 showed high affinities for both l-arginine and l-ornithine (Km in the micromolar range). A difference between the two transporters was the significantly lower affinity of ArcD2 for the cationic amino acids l-ornithine, l-lysine, and l-histidine. In contrast, the affinity of ArcD2 was higher for the neutral amino acid l-alanine. Moreover, ArcD2 efficiently translocated l-alanine, while ArcD1 did not. Both transporters revealed affinities in the mM range for agmatine, cadaverine, histamine, and putrescine. These amines bind but are not translocated. It is concluded that ArcD1 is the main l-arginine/l-ornithine exchanger in the ADI pathway and that ArcD2 is not functionally expressed in the media used. ArcD2 is proposed to function together with the arcT gene that encodes a putative transaminase and is found adjacent to the arcD2 gene.<h4>Importance</h4>The arginine deiminase (ADI) pathway gene cluster in Lactococcus lactis contains two copies of a gene encoding an l-arginine/l-ornithine exchanger, the arcD1 and arcD2 genes. The physiological function of ArcD1 and ArcD2 was studied by deleting the two genes. It is concluded that ArcD1 is the main l-arginine/l-ornithine exchanger in the ADI pathway. ArcD2 is proposed to function as a l-arginine/l-alanine exchanger in a pathway together with the arcT gene, which is found adjacent to the arcD2 gene in the ADI gene cluster. << Less
-
The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids.
Porcelli V., Fiermonte G., Longo A., Palmieri F.
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matr ... >> More
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation. << Less
J. Biol. Chem. 289:13374-13384(2014) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Identification of the arginine/ornithine antiporter ArcD from Halobacterium salinarum.
Wimmer F., Oberwinkler T., Bisle B., Tittor J., Oesterhelt D.
This paper identifies the first arginine/ornithine antiporter ArcD from the domain of archea. The functional role of ArcD is demonstrated by transport assays with radioactive labelled arginine, by its necessity to enable arginine fermentation under anaerobic growth conditions and by the consumptio ... >> More
This paper identifies the first arginine/ornithine antiporter ArcD from the domain of archea. The functional role of ArcD is demonstrated by transport assays with radioactive labelled arginine, by its necessity to enable arginine fermentation under anaerobic growth conditions and by the consumption of arginine from the medium during growth. All three experimentally observables are severely disturbed when the deletion strain DeltaArcD is used. The isolated protein is verified by mass spectrometry and reconstituted in vesicles. The proteoliposomes are attached to a membrane and capacitive currents are recorded which appear upon initiation of the transport process by change from arginine-free to arginine-containing buffer. This clearly demonstrates that the purified 34kD protein is the functional unit. << Less