Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 2-hydroxyethylphosphonate Identifier CHEBI:60991 Charge -1 Formula C2H6O4P InChIKeyhelp_outline SEHJHHHUIGULEI-UHFFFAOYSA-M SMILEShelp_outline OCCP(O)([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formate Identifier CHEBI:15740 (Beilstein: 1901205; CAS: 71-47-6) help_outline Charge -1 Formula CHO2 InChIKeyhelp_outline BDAGIHXWWSANSR-UHFFFAOYSA-M SMILEShelp_outline [H]C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 97 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hydroxymethylphosphonate Identifier CHEBI:71199 Charge -1 Formula CH4O4P InChIKeyhelp_outline GTTBQSNGUYHPNK-UHFFFAOYSA-M SMILEShelp_outline OCP(O)([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:34791 | RHEA:34792 | RHEA:34793 | RHEA:34794 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis.
Cicchillo R.M., Zhang H., Blodgett J.A., Whitteck J.T., Li G., Nair S.K., van der Donk W.A., Metcalf W.W.
Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of t ... >> More
Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp(3))-C(sp(3)) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(ii)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes. << Less
-
On the stereochemistry of 2-hydroxyethylphosphonate dioxygenase.
Whitteck J.T., Malova P., Peck S.C., Cicchillo R.M., Hammerschmidt F., van der Donk W.A.
Stereochemical investigations have shown that the conversion of 2-hydroxyethylphosphonate to hydroxymethylphosphonate by the enzyme HEPD involves removal of the pro-S hydrogen at C2 and, surprisingly, the loss of stereochemical information at C1. As a result, the mechanisms previously proposed for ... >> More
Stereochemical investigations have shown that the conversion of 2-hydroxyethylphosphonate to hydroxymethylphosphonate by the enzyme HEPD involves removal of the pro-S hydrogen at C2 and, surprisingly, the loss of stereochemical information at C1. As a result, the mechanisms previously proposed for HEPD must be re-evaluated. << Less
-
Mechanism and substrate recognition of 2-hydroxyethylphosphonate dioxygenase.
Peck S.C., Cooke H.A., Cicchillo R.M., Malova P., Hammerschmidt F., Nair S.K., van der Donk W.A.
HEPD belongs to the superfamily of 2-His-1-carboxylate non-heme iron-dependent dioxygenases. It converts 2-hydroxyethylphosphonate (2-HEP) to hydroxymethylphosphonate (HMP) and formate. Previously postulated mechanisms for the reaction catalyzed by HEPD cannot explain its conversion of 1-HEP to ac ... >> More
HEPD belongs to the superfamily of 2-His-1-carboxylate non-heme iron-dependent dioxygenases. It converts 2-hydroxyethylphosphonate (2-HEP) to hydroxymethylphosphonate (HMP) and formate. Previously postulated mechanisms for the reaction catalyzed by HEPD cannot explain its conversion of 1-HEP to acetylphosphate. Alternative mechanisms that involve either phosphite or methylphosphonate as intermediates, which potentially explain all experimental studies including isotope labeling experiments and use of substrate analogues, were investigated. The results of these studies reveal that these alternative mechanisms are not correct. Site-directed mutagenesis studies of Lys16, Arg90, and Tyr98 support roles of these residues in binding of 2-HEP. Mutation of Lys16 to Ala resulted in an inactive enzyme, whereas mutation of Arg90 to Ala or Tyr98 to Phe greatly decreased k(cat)/K(m,2-HEP). Furthermore, the latter mutants could not be saturated in O(2). These results suggest that proper binding of 2-HEP is important for O(2) activation and that the enzyme uses a compulsory binding order with 2-HEP binding before O(2). The Y98F mutant produces methylphosphonate as a minor side product providing indirect support for the proposal that the last step during catalysis involves a ferric hydroxide reacting with a methylphosphonate radical. << Less
-
Hydroperoxylation by hydroxyethylphosphonate dioxygenase.
Whitteck J.T., Cicchillo R.M., van der Donk W.A.
Hydroxyethylphosphonate dioxygenase (HEPD) catalyzes the O(2)-dependent cleavage of the carbon-carbon bond of 2-hydroxyethylphosphonate (2-HEP) to afford hydroxymethylphosphonate (HMP) and formate without input of electrons or use of any organic cofactors. Two mechanisms have been proposed to acco ... >> More
Hydroxyethylphosphonate dioxygenase (HEPD) catalyzes the O(2)-dependent cleavage of the carbon-carbon bond of 2-hydroxyethylphosphonate (2-HEP) to afford hydroxymethylphosphonate (HMP) and formate without input of electrons or use of any organic cofactors. Two mechanisms have been proposed to account for this reaction. One involves initial hydroxylation of substrate to an acetal intermediate and its subsequent attack onto an Fe(IV)-oxo species. The second mechanism features initial hydroperoxylation of substrate followed by a Criegee rearrangement. To distinguish between the two mechanisms, substrate analogues were synthesized and presented to the enzyme. Hydroxymethylphosphonate was converted into phosphate and formate, and 1-hydroxyethylphosphonate was converted to acetylphosphate, which is an inhibitor of the enzyme. These results provide strong support for a Criegee rearrangement with a phosphorus-based migrating group and require that the O-O bond of molecular oxygen is not cleaved prior to substrate activation. (2R)-Hydroxypropylphosphonate partitioned between conversion to 2-oxopropylphosphonate and hydroxymethylphosphonate, with the latter in turn converted to phosphate and formate. Collectively, these results support a mechanism that proceeds by hydroperoxylation followed by a Criegee rearrangement. << Less
J. Am. Chem. Soc. 131:16225-16232(2009) [PubMed] [EuropePMC]