Enzymes
UniProtKB help_outline | 3,659 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline AH2 Identifier CHEBI:17499 Charge 0 Formula RH2 SMILEShelp_outline *([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 2,799 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline α-D-ribose 1-methylphosphonate 5-phosphate Identifier CHEBI:68686 Charge -3 Formula C6H11O10P2 InChIKeyhelp_outline RITBIFGLPRFTSB-KVTDHHQDSA-K SMILEShelp_outline CP([O-])(=O)O[C@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5'-deoxyadenosine Identifier CHEBI:17319 (CAS: 4754-39-6) help_outline Charge 0 Formula C10H13N5O3 InChIKeyhelp_outline XGYIMTFOTBMPFP-KQYNXXCUSA-N SMILEShelp_outline C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 69 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline A Identifier CHEBI:13193 Charge Formula R SMILEShelp_outline * 2D coordinates Mol file for the small molecule Search links Involved in 2,870 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline α-D-ribose 1,2-cyclic phosphate 5-phosphate Identifier CHEBI:68687 Charge -3 Formula C5H7O10P2 InChIKeyhelp_outline OXGUIUWFXGIWNM-TXICZTDVSA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])([O-])=O)O[C@@H]2OP([O-])(=O)O[C@H]12 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-methionine Identifier CHEBI:57844 Charge 0 Formula C5H11NO2S InChIKeyhelp_outline FFEARJCKVFRZRR-BYPYZUCNSA-N SMILEShelp_outline CSCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 121 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline methane Identifier CHEBI:16183 (Beilstein: 1718732; CAS: 74-82-8) help_outline Charge 0 Formula CH4 InChIKeyhelp_outline VNWKTOKETHGBQD-UHFFFAOYSA-N SMILEShelp_outline [H]C([H])([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:34707 | RHEA:34708 | RHEA:34709 | RHEA:34710 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Answers to the carbon-phosphorus lyase conundrum.
Zhang Q., van der Donk W.A.
-
Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway.
Jochimsen B., Lolle S., McSorley F.R., Nabi M., Stougaard J., Zechel D.L., Hove-Jensen B.
Organophosphonate utilization by Escherichia coli requires the 14 cistrons of the phnCDEFGHIJKLMNOP operon, of which the carbon-phosphorus lyase has been postulated to consist of the seven polypeptides specified by phnG to phnM. A 5,660-bp DNA fragment encompassing phnGHIJKLM is cloned, followed b ... >> More
Organophosphonate utilization by Escherichia coli requires the 14 cistrons of the phnCDEFGHIJKLMNOP operon, of which the carbon-phosphorus lyase has been postulated to consist of the seven polypeptides specified by phnG to phnM. A 5,660-bp DNA fragment encompassing phnGHIJKLM is cloned, followed by expression in E. coli and purification of Phn-polypeptides. PhnG, PhnH, PhnI, PhnJ, and PhnK copurify as a protein complex by ion-exchange, size-exclusion, and affinity chromatography. The five polypeptides also comigrate in native-PAGE. Cross-linking of the purified protein complex reveals a close proximity of PhnG, PhnI, PhnJ, and PhnK, as these subunits disappear concomitant with the formation of large cross-linked protein complexes. Two molecular forms are identified, a major form of molecular mass of approximately 260 kDa, a minor form of approximately 640 kDa. The stoichiometry of the protein complex is suggested to be PhnG(4)H(2)I(2)J(2)K. Deletion of individual phn genes reveals that a strain harboring plasmid-borne phnGHIJ produces a protein complex consisting of PhnG, PhnH, PhnI, and PhnJ, whereas a strain harboring plasmid-borne phnGIJK produces a protein complex consisting of PhnG and PhnI. We conclude that phnGHIJK specify a soluble multisubunit protein complex essential for organophosphonate utilization. << Less
Proc. Natl. Acad. Sci. U.S.A. 108:11393-11398(2011) [PubMed] [EuropePMC]
-
Intermediates in the transformation of phosphonates to phosphate by bacteria.
Kamat S.S., Williams H.J., Raushel F.M.
Phosphorus is an essential element for all known forms of life. In living systems, phosphorus is an integral component of nucleic acids, carbohydrates and phospholipids, where it is incorporated as a derivative of phosphate. However, most Gram-negative bacteria have the capability to use phosphona ... >> More
Phosphorus is an essential element for all known forms of life. In living systems, phosphorus is an integral component of nucleic acids, carbohydrates and phospholipids, where it is incorporated as a derivative of phosphate. However, most Gram-negative bacteria have the capability to use phosphonates as a nutritional source of phosphorus under conditions of phosphate starvation. In these organisms, methylphosphonate is converted to phosphate and methane. In a formal sense, this transformation is a hydrolytic cleavage of a carbon-phosphorus (C-P) bond, but a general enzymatic mechanism for the activation and conversion of alkylphosphonates to phosphate and an alkane has not been elucidated despite much effort for more than two decades. The actual mechanism for C-P bond cleavage is likely to be a radical-based transformation. In Escherichia coli, the catalytic machinery for the C-P lyase reaction has been localized to the phn gene cluster. This operon consists of the 14 genes phnC, phnD, …, phnP. Genetic and biochemical experiments have demonstrated that the genes phnG, phnH, …, phnM encode proteins that are essential for the conversion of phosphonates to phosphate and that the proteins encoded by the other genes in the operon have auxiliary functions. There are no functional annotations for any of the seven proteins considered essential for C-P bond cleavage. Here we show that methylphosphonate reacts with MgATP to form α-D-ribose-1-methylphosphonate-5-triphosphate (RPnTP) and adenine. The triphosphate moiety of RPnTP is hydrolysed to pyrophosphate and α-D-ribose-1-methylphosphonate-5-phosphate (PRPn). The C-P bond of PRPn is subsequently cleaved in a radical-based reaction producing α-D-ribose-1,2-cyclic-phosphate-5-phosphate and methane in the presence of S-adenosyl-L-methionine. Substantial quantities of phosphonates are produced worldwide for industrial processes, detergents, herbicides and pharmaceuticals. Our elucidation of the chemical steps for the biodegradation of alkylphosphonates shows how these compounds can be metabolized and recycled to phosphate. << Less
Nature 480:570-573(2011) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.