Reaction participants Show >> << Hide
- Name help_outline tellurite Identifier CHEBI:30477 (CAS: 15852-22-9) help_outline Charge -2 Formula O3Te InChIKeyhelp_outline SITVSCPRJNYAGV-UHFFFAOYSA-L SMILEShelp_outline [O-][Te]([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 904 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline methanetellurite Identifier CHEBI:71624 Charge -1 Formula CH3O3Te InChIKeyhelp_outline DPPANEFZFQYGIG-UHFFFAOYSA-M SMILEShelp_outline C[Te]([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 827 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:34539 | RHEA:34540 | RHEA:34541 | RHEA:34542 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Structure and mechanism of the chalcogen-detoxifying protein TehB from Escherichia coli.
Choudhury H.G., Cameron A.D., Iwata S., Beis K.
The oxyanion derivatives of the chalcogens tellurium and selenium are toxic to living organisms even at very low levels. Bacteria have developed mechanisms to overcome their toxicity by methylating them. The structure of TehB from Escherichia coli has been determined in the presence of the cofacto ... >> More
The oxyanion derivatives of the chalcogens tellurium and selenium are toxic to living organisms even at very low levels. Bacteria have developed mechanisms to overcome their toxicity by methylating them. The structure of TehB from Escherichia coli has been determined in the presence of the cofactor analogues SAH (S-adenosylhomocysteine) and sinefungin (a non-hydrolysable form of S-adenosyl-L-methionine) at 1.48 Å (1 Å=0.1 nm) and 1.9 Å respectively. Interestingly, our kinetic data show that TehB does not discriminate between selenium or tellurite oxyanions, making it a very powerful detoxifying protein. Analysis of the active site has identified three conserved residues that are capable of binding and orientating the metals for nucleophilic attack: His176, Arg177 and Arg184. Mutagenesis studies revealed that the H176A and R184A mutants retained most of their activity, whereas the R177A mutant had 65% of its activity abolished. Based on the structure and kinetic data we propose an SN2 nucleophilic attack reaction mechanism. These data provide the first molecular understanding of the detoxification of chalcogens by bacteria. << Less