Reaction participants Show >> << Hide
- Name help_outline (2E)-geranial Identifier CHEBI:16980 (CAS: 141-27-5,5392-40-5) help_outline Charge 0 Formula C10H16O InChIKeyhelp_outline WTEVQBCEXWBHNA-JXMROGBWSA-N SMILEShelp_outline CC(C)=CCC\C(C)=C\C=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline geranate Identifier CHEBI:67260 Charge -1 Formula C10H15O2 InChIKeyhelp_outline ZHYZQXUYZJNEHD-VQHVLOKHSA-M SMILEShelp_outline CC(C)=CCC\C(C)=C\C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:34351 | RHEA:34352 | RHEA:34353 | RHEA:34354 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans.
Luddeke F., Wulfing A., Timke M., Germer F., Weber J., Dikfidan A., Rahnfeld T., Linder D., Meyerdierks A., Harder J.
Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed th ... >> More
Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed the cloning of the corresponding open reading frame (ORF), the first bacterial gene for a GeDH (geoA, for geraniol oxidation pathway). The C. defragrans geraniol dehydrogenase is a homodimeric enzyme that affiliates with the zinc-containing benzyl alcohol dehydrogenases in the superfamily of medium-chain-length dehydrogenases/reductases (MDR). The purified enzyme most efficiently catalyzes the oxidation of perillyl alcohol (k(cat)/K(m) = 2.02 × 10(6) M(-1) s(-1)), followed by geraniol (k(cat)/K(m) = 1.57 × 10(6) M(-1) s(-1)). Apparent K(m) values of <10 μM are consistent with an in vivo toxicity of geraniol above 5 μM. In the genetic vicinity of geoA is a putative aldehyde dehydrogenase that was named geoB and identified as a highly abundant protein during growth with phellandrene. Extracts of Escherichia coli expressing geoB demonstrated in vitro a geranial dehydrogenase (GaDH) activity. GaDH activity was independent of coenzyme A. The irreversible formation of geranic acid allows for a metabolic flux from β-myrcene via linalool, geraniol, and geranial to geranic acid. << Less
Appl. Environ. Microbiol. 78:2128-2136(2012) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Geraniol biotransformation-pathway in spores of Penicillium digitatum.
Wolken W.A., van der Werf M.J.
Spores of Penicillium digitatum ATCC 201167 transform geraniol, nerol, citral, and geranic acid into methylheptenone. Spore extracts of P. digitatum convert geraniol and nerol NAD+-dependently into citral. Spore extract also converts citral NAD+-dependently into geranic acid. Furthermore, a novel ... >> More
Spores of Penicillium digitatum ATCC 201167 transform geraniol, nerol, citral, and geranic acid into methylheptenone. Spore extracts of P. digitatum convert geraniol and nerol NAD+-dependently into citral. Spore extract also converts citral NAD+-dependently into geranic acid. Furthermore, a novel enzymatic activity, citral lyase, which cofactor-independently converts citral into methylheptenone and acetaldehyde, was detected. These result show that spores of P. digitatum convert geraniol via a novel biotransformation pathway. This is the first time a biotransformation pathway in fungal spores has been substantiated by biochemical studies. Geraniol and nerol are converted into citral by citrol dehydrogenase activity. The citral formed is subsequently deacetylated by citral lyase activity, forming methylheptenone. Moreover, citral is converted reversibly into geranic acid by citral dehydrogenase activity. << Less
Appl Microbiol Biotechnol 57:731-737(2001) [PubMed] [EuropePMC]