Reaction participants Show >> << Hide
- Name help_outline 2'-deamino-2'-hydroxyneamine Identifier CHEBI:67213 Charge 3 Formula C12H28N3O7 InChIKeyhelp_outline AWRLKTYNEGEURZ-JCLMPDJQSA-Q SMILEShelp_outline [NH3+]C[C@H]1O[C@H](O[C@@H]2[C@@H]([NH3+])C[C@@H]([NH3+])[C@H](O)[C@H]2O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-oxoglutarate Identifier CHEBI:16810 (CAS: 64-15-3) help_outline Charge -2 Formula C5H4O5 InChIKeyhelp_outline KPGXRSRHYNQIFN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 426 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2'-deamino-2'-hydroxy-6'-dehydroparomamine Identifier CHEBI:67214 Charge 2 Formula C12H24N2O8 InChIKeyhelp_outline NINNJPOSRPHVPI-JCLMPDJQSA-P SMILEShelp_outline [NH3+][C@@H]1C[C@H]([NH3+])[C@@H](O[C@H]2O[C@H](C=O)[C@@H](O)[C@H](O)[C@H]2O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamate Identifier CHEBI:29985 (CAS: 11070-68-1) help_outline Charge -1 Formula C5H8NO4 InChIKeyhelp_outline WHUUTDBJXJRKMK-VKHMYHEASA-M SMILEShelp_outline [NH3+][C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 244 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:34299 | RHEA:34300 | RHEA:34301 | RHEA:34302 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Functional characterization of kanB by complementing in engineered Streptomyces fradiae Deltaneo6::tsr.
Jnawali H.N., Subba B., Liou K., Sohng J.K.
A putative aminotransferase gene, kanB, lies in the biosynthetic gene cluster of Streptomyces kanamyceticus ATCC 12853 and has 66% identity with neo6 in neomycin biosynthesis. Streptomyces fradiae Deltaneo6::tsr was generated by disrupting neo6 in the neomycin producer Streptomyces fradiae. Neomyc ... >> More
A putative aminotransferase gene, kanB, lies in the biosynthetic gene cluster of Streptomyces kanamyceticus ATCC 12853 and has 66% identity with neo6 in neomycin biosynthesis. Streptomyces fradiae Deltaneo6::tsr was generated by disrupting neo6 in the neomycin producer Streptomyces fradiae. Neomycin production was completely abolished in the disruptant mutant but was restored through self-complementation of neo6. S. fradiae HN4 was generated through complementation with kanB in Streptomyces fradiae neo6::tsr. Based on metabolite analysis by ESI/MS and LC/MS, neomycin production was restored in Streptomyces fradiae HN4. Thus, like neo6, kanB also functions as a 2-deoxy-scyllo-inosose aminotransferase that has dual functions in the formation of 2-deoxy-scyllo-inosose (DOS). << Less
Biotechnol. Lett. 31:869-875(2009) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation.
Park J.W., Park S.R., Nepal K.K., Han A.R., Ban Y.H., Yoo Y.J., Kim E.J., Kim E.M., Kim D., Sohng J.K., Yoon Y.J.
Kanamycin is one of the most widely used antibiotics, yet its biosynthetic pathway remains unclear. Current proposals suggest that the kanamycin biosynthetic products are linearly related via single enzymatic transformations. To explore this system, we have reconstructed the entire biosynthetic pa ... >> More
Kanamycin is one of the most widely used antibiotics, yet its biosynthetic pathway remains unclear. Current proposals suggest that the kanamycin biosynthetic products are linearly related via single enzymatic transformations. To explore this system, we have reconstructed the entire biosynthetic pathway through the heterologous expression of combinations of putative biosynthetic genes from Streptomyces kanamyceticus in the non-aminoglycoside-producing Streptomyces venezuelae. Unexpectedly, we discovered that the biosynthetic pathway contains an early branch point, governed by the substrate promiscuity of a glycosyltransferase, that leads to the formation of two parallel pathways in which early intermediates are further modified. Glycosyltransferase exchange can alter flux through these two parallel pathways, and the addition of other biosynthetic enzymes can be used to synthesize known and new highly active antibiotics. These results complete our understanding of kanamycin biosynthesis and demonstrate the potential of pathway engineering for direct in vivo production of clinically useful antibiotics and more robust aminoglycosides. << Less
Nat. Chem. Biol. 7:843-852(2011) [PubMed] [EuropePMC]
This publication is cited by 13 other entries.