Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline L-dopa Identifier CHEBI:57504 Charge 0 Formula C9H11NO4 InChIKeyhelp_outline WTDRDQBEARUVNC-LURJTMIESA-N SMILEShelp_outline [NH3+][C@@H](Cc1ccc(O)c(O)c1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 15 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-dopaquinone Identifier CHEBI:57924 Charge 0 Formula C9H9NO4 InChIKeyhelp_outline AHMIDUVKSGCHAU-LURJTMIESA-N SMILEShelp_outline [NH3+][C@@H](CC1=CC(=O)C(=O)C=C1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:34287 | RHEA:34288 | RHEA:34289 | RHEA:34290 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme.
Rolff M., Schottenheim J., Decker H., Tuczek F.
The critical review describes the known dicopper systems mediating the aromatic hydroxylation of monophenolic substrates. Such systems are of interest as structural and functional models of the type 3 copper enzyme tyrosinase, which catalyzes the ortho-hydroxylation of tyrosine to DOPA and the sub ... >> More
The critical review describes the known dicopper systems mediating the aromatic hydroxylation of monophenolic substrates. Such systems are of interest as structural and functional models of the type 3 copper enzyme tyrosinase, which catalyzes the ortho-hydroxylation of tyrosine to DOPA and the subsequent two-electron oxidation to dopaquinone. Small-molecule systems involving μ-η²:η² peroxo, bis-μ-oxo and trans-μ-1,2 peroxo dicopper cores are considered separately. These tyrosinase models are contrasted to copper-dioxygen systems inducing radical reactions, and the different mechanistic pathways are discussed. In addition to considering the stoichiometric conversion of phenolic substrates, the available catalytic systems are described. The second part of the review deals with tyrosinase. After an introduction on the occurrence and function of tyrosinases, several aspects of the chemical reactivity of this class of enzymes are described. The analogies between the small-molecule and the enzymatic system are considered, and the implications for the reaction pathway of tyrosinase are discussed (140 references). << Less
Chem Soc Rev 40:4077-4098(2011) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Purification, characterization, and molecular cloning of tyrosinase from Pholiota nameko.
Kawamura-Konishi Y., Tsuji M., Hatana S., Asanuma M., Kakuta D., Kawano T., Mukouyama E.B., Goto H., Suzuki H.
Tyrosinase (monophenol, 3,4-dihydroxy L-phenylalanine (L-DOPA):oxygen oxidoreductase, EC 1.14.18.1) was isolated from fruit bodies of Pholiota nameko and purified to homogeneity. The purified enzyme was a monomer with a molecular weight of 42,000 and contained 1.9 copper atoms per molecule. The N- ... >> More
Tyrosinase (monophenol, 3,4-dihydroxy L-phenylalanine (L-DOPA):oxygen oxidoreductase, EC 1.14.18.1) was isolated from fruit bodies of Pholiota nameko and purified to homogeneity. The purified enzyme was a monomer with a molecular weight of 42,000 and contained 1.9 copper atoms per molecule. The N-terminal of the purified enzyme could not be detected by Edman degradation, probably due to blocking, while the C-terminal sequence of the enzyme was determined to be -Ala-Ser-Val-Phe-OH. The amino acid sequence deduced by cDNA cloning was made up of 625 amino acid residues and contained two putative copper-binding sites highly conserved in tyrosinases from various organisms. The C-terminal sequence of the purified enzyme did not correspond to that of the deduced sequence, but agreed with Ala384-Ser385-Val386-Phe387 in sequence. When the encoded protein was truncated at Phe387, the molecular weight of the residual protein was calculated to be approximately 42,000. These results suggest that P. nameko tyrosinase is expressed as a proenzyme followed by specific cleavage to produce a mature enzyme. << Less
Biosci. Biotechnol. Biochem. 71:1752-1760(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Tyrosinase: a comprehensive review of its mechanism.
Sanchez-Ferrer A., Rodriguez-Lopez J.N., Garcia-Canovas F., Garcia-Carmona F.
Biochim Biophys Acta 1247:1-11(1995) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
Comments
RHEA:34287 part of RHEA:18117