Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 2-deoxy-scyllo-inosamine Identifier CHEBI:65003 Charge 1 Formula C6H14NO4 InChIKeyhelp_outline QXQNRSUOYNMXDL-KGJVWPDLSA-O SMILEShelp_outline [NH3+][C@H]1C[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 904 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-amino-2,3-dideoxy-scyllo-inosose Identifier CHEBI:65002 Charge 1 Formula C6H12NO4 InChIKeyhelp_outline FSUGCKMUTGKWIE-YGIVHSIPSA-O SMILEShelp_outline [NH3+][C@H]1CC(=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5'-deoxyadenosine Identifier CHEBI:17319 (CAS: 4754-39-6) help_outline Charge 0 Formula C10H13N5O3 InChIKeyhelp_outline XGYIMTFOTBMPFP-KQYNXXCUSA-N SMILEShelp_outline C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 70 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-methionine Identifier CHEBI:57844 Charge 0 Formula C5H11NO2S InChIKeyhelp_outline FFEARJCKVFRZRR-BYPYZUCNSA-N SMILEShelp_outline CSCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 122 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:34275 | RHEA:34276 | RHEA:34277 | RHEA:34278 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Characterization and mechanistic study of a radical SAM dehydrogenase in the biosynthesis of butirosin.
Yokoyama K., Numakura M., Kudo F., Ohmori D., Eguchi T.
BtrN encoded in the butirosin biosynthetic gene cluster possesses a CXXXCXXC motif conserved within the radical S-adenosyl methionine (SAM) superfamily. Its gene disruption in the butirosin producer Bacillus circulans caused the interruption of the biosynthetic pathway between 2-deoxy-scyllo-inosa ... >> More
BtrN encoded in the butirosin biosynthetic gene cluster possesses a CXXXCXXC motif conserved within the radical S-adenosyl methionine (SAM) superfamily. Its gene disruption in the butirosin producer Bacillus circulans caused the interruption of the biosynthetic pathway between 2-deoxy-scyllo-inosamine (DOIA) and 2-deoxystreptamine (DOS). Further, in vitro assay of the overexpressed enzyme revealed that BtrN catalyzed the oxidation of DOIA under the strictly anaerobic conditions along with consumption of an equimolar amount of SAM to produce 5'-deoxyadenosine, methionine, and 3-amino-2,3-dideoxy-scyllo-inosose (amino-DOI). Kinetic analysis showed substrate inhibition by DOIA but not by SAM, which suggests that the reaction is the Ordered Bi Ter mechanism and that SAM is the first substrate and DOIA is the second. The BtrN reaction with [3-2H]DOIA generated nonlabeled, monodeuterated and dideuterated 5'-deoxyadenosines, while no deuterium was incorporated by incubation of nonlabeled DOIA in the deuterium oxide buffer. These results indicated that the hydrogen atom at C-3 of DOIA was directly transferred to 5'-deoxyadenosine to give the radical intermediate of DOIA. Generation of nonlabeled and dideuterated 5'-deoxyadenosines proved the reversibility of the hydrogen abstraction step. The present study suggests that BtrN is an unusual radical SAM dehydrogenase catalyzing the oxidation of the hydroxyl group by a radical mechanism. This is the first report of the mechanistic study on the oxidation of a hydroxyl group by a radical SAM enzyme. << Less
J. Am. Chem. Soc. 129:15147-15155(2007) [PubMed] [EuropePMC]
-
Mechanistic study on the reaction of a radical SAM dehydrogenase BtrN by electron paramagnetic resonance spectroscopy.
Yokoyama K., Ohmori D., Kudo F., Eguchi T.
BtrN is a radical SAM ( S-adenosyl-l-methionine) enzyme that catalyzes the oxidation of 2-deoxy-scyllo-inosamine (DOIA) into 3-amino-2,3-dideoxy-scyllo-inosose (amino-DOI) during the biosynthesis of 2-deoxystreptamine (DOS) in the butirosin producer Bacillus circulans. Recently, we have shown that ... >> More
BtrN is a radical SAM ( S-adenosyl-l-methionine) enzyme that catalyzes the oxidation of 2-deoxy-scyllo-inosamine (DOIA) into 3-amino-2,3-dideoxy-scyllo-inosose (amino-DOI) during the biosynthesis of 2-deoxystreptamine (DOS) in the butirosin producer Bacillus circulans. Recently, we have shown that BtrN catalyzes the transfer of a hydrogen atom at C-3 of DOIA to 5'-deoxyadenosine, and thus, the reaction was proposed to proceed through the hydrogen atom abstraction by the 5'-deoxyadenosyl radical. In this work, the BtrN reaction was analyzed by EPR spectroscopy. A sharp double triplet EPR signal was observed when the EPR spectrum of the enzyme reaction mixture was recorded at 50 K. The spin coupling with protons partially disappeared by reaction with [2,2-(2)H 2]DOIA, which unambiguously proved the observed signal to be a radical on C-3 of DOIA. On the other hand, the EPR spectrum of the [4Fe-4S] cluster of BtrN during the reaction showed a complex signal due to the presence of several species. Comparison of signals derived from a [4Fe-4S] center of BtrN incubated with various combinations of products (5'-deoxyadenosine, l-methionine, and amino-DOI) and substrates (SAM and DOIA) indicated that the EPR signals observed during the reaction were derived from free BtrN, a BtrN-SAM complex, and a BtrN-SAM-DOIA complex. Significant changes in the EPR signals upon binding of SAM and DOIA suggest the close interaction of both substrates with the [4Fe-4S] cluster. << Less