Reaction participants Show >> << Hide
- Name help_outline 5-nitrosalicylate Identifier CHEBI:61268 Charge -1 Formula C7H4NO5 InChIKeyhelp_outline PPDRLQLKHRZIJC-UHFFFAOYSA-M SMILEShelp_outline Oc1ccc(cc1C([O-])=O)[N+]([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-oxo-3-(5-oxofuran-2-ylidene)propanoate Identifier CHEBI:65081 Charge -1 Formula C7H3O5 InChIKeyhelp_outline DDHFXYAKWRQJJH-ARJAWSKDSA-M SMILEShelp_outline [O-]C(=O)C(=O)\C=C1OC(=O)C=C/1 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline nitrite Identifier CHEBI:16301 (CAS: 14797-65-0) help_outline Charge -1 Formula NO2 InChIKeyhelp_outline IOVCWXUNBOPUCH-UHFFFAOYSA-M SMILEShelp_outline [O-]N=O 2D coordinates Mol file for the small molecule Search links Involved in 79 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:34227 | RHEA:34228 | RHEA:34229 | RHEA:34230 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Biodegradation of 5-Nitroanthranilic Acid by Bradyrhizobium sp. Strain JS329.
Qu Y., Spain J.C.
Biodegradation of synthetic compounds has been studied extensively, but the metabolic diversity required for catabolism of many natural compounds has not been addressed. 5-Nitroanthranilic acid (5NAA), produced in soil by Streptomyces scabies, is also the starting material for synthetic dyes and o ... >> More
Biodegradation of synthetic compounds has been studied extensively, but the metabolic diversity required for catabolism of many natural compounds has not been addressed. 5-Nitroanthranilic acid (5NAA), produced in soil by Streptomyces scabies, is also the starting material for synthetic dyes and other nitroaromatic compounds. Bradyrhizobium JS329 was isolated from soil by selective enrichment with 5NAA. When grown on 5NAA, the isolate released stoichiometric amounts of nitrite and half of the stoichiometric amounts of ammonia. Enzyme assays indicate that the initial step in 5NAA degradation is an unusual hydrolytic deamination for formation of 5-nitrosalicylic acid (5NSA). Cloning and heterologous expression revealed the genes that encode 5NAA deaminase (naaA) and the 5NSA dioxygenase (naaB) that cleaves the aromatic ring of 5NSA without prior removal of the nitro group. The results provide the first clear evidence for the initial steps in biodegradation of amino-nitroaromatic compounds and reveal a novel deamination reaction for aromatic amines. << Less
Appl. Environ. Microbiol. 76:1417-1422(2010) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Molecular and biochemical characterization of the 5-nitroanthranilic acid degradation pathway in Bradyrhizobium sp. strain JS329.
Qu Y., Spain J.C.
Biodegradation pathways of synthetic nitroaromatic compounds and anilines are well documented, but little is known about those of nitroanilines. We previously reported that the initial step in 5-nitroanthranilic acid (5NAA) degradation by Bradyrhizobium sp. strain JS329 is a hydrolytic deamination ... >> More
Biodegradation pathways of synthetic nitroaromatic compounds and anilines are well documented, but little is known about those of nitroanilines. We previously reported that the initial step in 5-nitroanthranilic acid (5NAA) degradation by Bradyrhizobium sp. strain JS329 is a hydrolytic deamination to form 5-nitrosalicylic acid (5NSA), followed by ring fission catalyzed by 5NSA dioxygenase. The mechanism of release of the nitro group was unknown. In this study, we subcloned, sequenced, and expressed the genes encoding 5NAA deaminase (5NAA aminohydrolase, NaaA), 5NSA dioxygenase (NaaB) and lactonase (NaaC), the key genes responsible for 5NAA degradation. Sequence analysis and enzyme characterization revealed that NaaA is a hydrolytic metalloenzyme with a narrow substrate range. The nitro group is spontaneously eliminated as nitrite concomitant with the formation of a lactone from the ring fission product of 5NSA dioxygenation. The elimination of the nitro group during lactone formation is a previously unreported mechanism for denitration of nitro aliphatic compounds. << Less
J. Bacteriol. 193:3057-3063(2011) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
Comments
Multi-step reaction: RHEA:34231 and RHEA:34235.