Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (2Z,4E)-2-hydroxy-6-oxohexa-2,4-dienoate Identifier CHEBI:71198 Charge -1 Formula C6H5O4 InChIKeyhelp_outline KGLCZTRXNNGESL-WFTYEQLWSA-M SMILEShelp_outline [H]C(=O)\C=C\C=C(/O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2Z,4E)-2-hydroxyhexa-2,4-dienedioate Identifier CHEBI:28080 (Beilstein: 4310322) help_outline Charge -2 Formula C6H4O5 InChIKeyhelp_outline JBEBGTMCZIGUTK-TZFCGSKZSA-L SMILEShelp_outline O\C(=C/C=C/C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:34219 | RHEA:34220 | RHEA:34221 | RHEA:34222 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Overlapping substrate specificities of benzaldehyde dehydrogenase (the xylC gene product) and 2-hydroxymuconic semialdehyde dehydrogenase (the xylG gene product) encoded by TOL plasmid pWW0 of Pseudomonas putida.
Inoue J., Shaw J.P., Rekik M., Harayama S.
Two aldehyde dehydrogenases involved in the degradation of toluene and xylenes, namely, benzaldehyde dehydrogenase and 2-hydroxymuconic semialdehyde dehydrogenase, are encoded by the xylC and xylG genes, respectively, on TOL plasmid pWW0 of Pseudomonas putida. The nucleotide sequence of xylC was d ... >> More
Two aldehyde dehydrogenases involved in the degradation of toluene and xylenes, namely, benzaldehyde dehydrogenase and 2-hydroxymuconic semialdehyde dehydrogenase, are encoded by the xylC and xylG genes, respectively, on TOL plasmid pWW0 of Pseudomonas putida. The nucleotide sequence of xylC was determined in this study. A protein exhibiting benzaldehyde dehydrogenase activity had been purified from cells of P. putida (pWW0) (J. P. Shaw and S. Harayama, Eur. J. Biochem. 191:705-714, 1990); however, the amino-terminal sequence of this protein does not correspond to that predicted from the xylC sequence but does correspond to that predicted from the xylG sequence. The protein purified in the earlier work was therefore 2-hydroxymuconic semialdehyde dehydrogenase (the xylG gene product). This conclusion was confirmed by the fact that this protein oxidized 2-hydroxymuconic semialdehyde (kcat/Km = 1.6 x 10(6) s-1 M-1) more efficiently than benzaldehyde (kcat/Km = 3.2 x 10(4) s-1 M-1). The xylC product, the genuine benzaldehyde dehydrogenase, was purified from extracts of P. putida (pWW0-161 delta rylG) which does not synthesize 2-hydroxymuconic semialdehyde dehydrogenase. The amino-terminal sequence of the purified protein corresponds to the amino-terminal sequence deduced from the xylC sequence. This enzyme efficiently oxidized benzaldehyde (kcat/Km = 1.7 x 10(7) s-1 M-1) and its analogs but did not oxidize 2-hydroxymuconic semialdehyde or its analogs. << Less
-
Metabolism of 4-amino-3-hydroxybenzoic acid by Bordetella sp. strain 10d: A different modified meta-cleavage pathway for 2-aminophenols.
Orii C., Takenaka S., Murakami S., Aoki K.
Bordetella sp. strain 10d metabolizes 4-amino-3-hydroxybenzoic acid via 2-hydroxymuconic 6-semialdehyde. Cell extracts from 4-amino-3-hydroxybenzoate-grown cells showed high NAD(+)-dependent 2-hydroxymuconic 6-semialdehyde dehydrogenase, 4-oxalocrotonate tautomerase, 4-oxalocrotonate decarboxylase ... >> More
Bordetella sp. strain 10d metabolizes 4-amino-3-hydroxybenzoic acid via 2-hydroxymuconic 6-semialdehyde. Cell extracts from 4-amino-3-hydroxybenzoate-grown cells showed high NAD(+)-dependent 2-hydroxymuconic 6-semialdehyde dehydrogenase, 4-oxalocrotonate tautomerase, 4-oxalocrotonate decarboxylase, and 2-oxopent-4-enoate hydratase activities, but no 2-hydroxymuconic 6-semialdehyde hydrolase activity. These enzymes involved in 4-amino-3-hydroxybenzoate metabolism were purified and characterized. When 2-hydroxymuconic 6-semialdehyde was used as substrate in a reaction mixture containing NAD(+) and cell extracts from 4-amino-3-hydroxybenzoate-grown cells, 4-oxalocrotonic acid, 2-oxopent-4-enoic acid, and 4-hydroxy-2-oxovaleric acid were identified as intermediates, and pyruvic acid was identified as the final product. A complete pathway for the metabolism of 4-amino-3-hydroxybenzoic acid in strain 10d is proposed. Strain 10d metabolized 2-hydroxymuconic 6-semialdehyde derived from 4-amino-3-hydroxybenzoic acid via a dehydrogenative route, not via a hydrolytic route. This proposed metabolic pathway differs considerably from the modified meta-cleavage pathway of 2-aminophenol and those previously reported for methyl- and chloro-derivatives. << Less
Biosci Biotechnol Biochem 70:2653-2661(2006) [PubMed] [EuropePMC]
-
Uncovering the protocatechuate 2,3-cleavage pathway genes.
Kasai D., Fujinami T., Abe T., Mase K., Katayama Y., Fukuda M., Masai E.
Paenibacillus sp. (formerly Bacillus macerans) strain JJ-1b is able to grow on 4-hydroxybenzoate (4HB) as a sole source of carbon and energy and is known to degrade 4HB via the protocatechuate (PCA) 2,3-cleavage pathway. However, none of the genes involved in this pathway have been identified. In ... >> More
Paenibacillus sp. (formerly Bacillus macerans) strain JJ-1b is able to grow on 4-hydroxybenzoate (4HB) as a sole source of carbon and energy and is known to degrade 4HB via the protocatechuate (PCA) 2,3-cleavage pathway. However, none of the genes involved in this pathway have been identified. In this study, we identified and characterized the JJ-1b genes for the 4HB catabolic pathway via the PCA 2,3-cleavage pathway, which consisted of praR and praABEGFDCHI. Based on the enzyme activities of cell extracts of Escherichia coli carrying praI, praA, praH, praB, praC, and praD, these genes were found to code for 4HB 3-hydroxylase, PCA 2,3-dioxygenase, 5-carboxy-2-hydroxymuconate-6-semialdehyde decarboxylase, 2-hydroxymuconate-6-semialdehyde dehydrogenase, 4-oxalocrotonate (OCA) tautomerase, and OCA decarboxylase, respectively, which are involved in the conversion of 4HB into 2-hydroxypenta-2,4-dienoate (HPD). The praE, praF, and praG gene products exhibited 45 to 61% amino acid sequence identity to the corresponding enzymes responsible for the catabolism of HPD to pyruvate and acetyl coenzyme A. The deduced amino acid sequence of praR showed similarity with those of IclR-type transcriptional regulators. Reverse transcription-PCR analysis revealed that praABEGFDCHI constitute an operon, and these genes were expressed during the growth of JJ-1b on 4HB and PCA. praR-praABEGFDCHI conferred the ability to grow on 4HB to E. coli, suggesting that praEGF were functional for the conversion of HPD to pyruvate and acetyl coenzyme A. A promoter analysis suggested that praR encodes a repressor of the pra operon. << Less
J. Bacteriol. 191:6758-6768(2009) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.