Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (5R)-5-phosphooxy-L-lysine Identifier CHEBI:57882 Charge -1 Formula C6H14N2O6P InChIKeyhelp_outline WLPXLNNUXMDSPG-UHNVWZDZSA-M SMILEShelp_outline [NH3+]C[C@@H](CC[C@H]([NH3+])C([O-])=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (S)-2-amino-6-oxohexanoate Identifier CHEBI:58321 Charge 0 Formula C6H11NO3 InChIKeyhelp_outline GFXYTQPNNXGICT-YFKPBYRVSA-N SMILEShelp_outline [H]C(=O)CCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 17 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NH4+ Identifier CHEBI:28938 (CAS: 14798-03-9) help_outline Charge 1 Formula H4N InChIKeyhelp_outline QGZKDVFQNNGYKY-UHFFFAOYSA-O SMILEShelp_outline [H][N+]([H])([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 529 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:34091 | RHEA:34092 | RHEA:34093 | RHEA:34094 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
Degradation of O-phosphohydroxylysine by rat liver. Purification of the phospho-lyase.
Tsai C.H., Henderson L.M.
-
Molecular identification of hydroxylysine kinase and of ammoniophospholyases acting on 5-phosphohydroxy-L-lysine and phosphoethanolamine.
Veiga-da-Cunha M., Hadi F., Balligand T., Stroobant V., Van Schaftingen E.
The purpose of the present work was to identify the catalytic activity of AGXT2L1 and AGXT2L2, two closely related, putative pyridoxal-phosphate-dependent enzymes encoded by vertebrate genomes. The existence of bacterial homologues (40-50% identity with AGXT2L1 and AGXT2L2) forming bi- or tri-func ... >> More
The purpose of the present work was to identify the catalytic activity of AGXT2L1 and AGXT2L2, two closely related, putative pyridoxal-phosphate-dependent enzymes encoded by vertebrate genomes. The existence of bacterial homologues (40-50% identity with AGXT2L1 and AGXT2L2) forming bi- or tri-functional proteins with a putative kinase belonging to the family of aminoglycoside phosphotransferases suggested that AGXT2L1 and AGXT2L2 acted on phosphorylated and aminated compounds. Vertebrate genomes were found to encode a homologue (AGPHD1) of these putative bacterial kinases, which was therefore likely to phosphorylate an amino compound bearing a hydroxyl group. These and other considerations led us to hypothesize that AGPHD1 corresponded to 5-hydroxy-L-lysine kinase and that AGXT2L1 and AGXT2L2 catalyzed the pyridoxal-phosphate-dependent breakdown of phosphoethanolamine and 5-phosphohydroxy-L-lysine. The three recombinant human proteins were produced and purified to homogeneity. AGPHD1 was indeed found to catalyze the GTP-dependent phosphorylation of 5-hydroxy-L-lysine. The phosphorylation product made by this enzyme was metabolized by AGXT2L2, which converted it to ammonia, inorganic phosphate, and 2-aminoadipate semialdehyde. AGXT2L1 catalyzed a similar reaction on phosphoethanolamine, converting it to ammonia, inorganic phosphate, and acetaldehyde. AGPHD1 and AGXT2L2 are likely to be the mutated enzymes in 5-hydroxylysinuria and 5-phosphohydroxylysinuria, respectively. The high level of expression of AGXT2L1 in human brain, as well as data in the literature linking AGXT2L1 to schizophrenia and bipolar disorders, suggest that these diseases may involve a perturbation of brain phosphoethanolamine metabolism. AGXT2L1 and AGXT2L2, the first ammoniophospholyases to be identified, belong to a family of aminotransferases acting on ω-amines. << Less
J. Biol. Chem. 287:7246-7255(2012) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.