Reaction participants Show >> << Hide
- Name help_outline 4-(6-hydroxypyridin-3-yl)-4-oxobutanoate Identifier CHEBI:66893 Charge -1 Formula C9H8NO4 InChIKeyhelp_outline OMAJIMAYOJBLJF-UHFFFAOYSA-M SMILEShelp_outline Oc1ccc(cn1)C(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2,5-dihydroxypyridine Identifier CHEBI:16364 (CAS: 5154-01-8) help_outline Charge 0 Formula C5H5NO2 InChIKeyhelp_outline CHGPEDOMXOLANF-UHFFFAOYSA-N SMILEShelp_outline Oc1ccc(O)nc1 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinate semialdehyde Identifier CHEBI:57706 Charge -1 Formula C4H5O3 InChIKeyhelp_outline UIUJIQZEACWQSV-UHFFFAOYSA-M SMILEShelp_outline [O-]C(=O)CCC=O 2D coordinates Mol file for the small molecule Search links Involved in 17 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33927 | RHEA:33928 | RHEA:33929 | RHEA:33930 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
6-hydroxy-3-succinoylpyridine hydroxylase catalyzes a central step of nicotine degradation in Agrobacterium tumefaciens S33.
Li H., Xie K., Huang H., Wang S.
Nicotine is a main alkaloid in tobacco and is also the primary toxic compound in tobacco wastes. It can be degraded by bacteria via either pyridine pathway or pyrrolidine pathway. Previously, a fused pathway of the pyridine pathway and the pyrrolidine pathway was proposed for nicotine degradation ... >> More
Nicotine is a main alkaloid in tobacco and is also the primary toxic compound in tobacco wastes. It can be degraded by bacteria via either pyridine pathway or pyrrolidine pathway. Previously, a fused pathway of the pyridine pathway and the pyrrolidine pathway was proposed for nicotine degradation by Agrobacterium tumefaciens S33, in which 6-hydroxy-3-succinoylpyridine (HSP) is a key intermediate connecting the two pathways. We report here the purification and properties of an NADH-dependent HSP hydroxylase from A. tumefaciens S33. The 90-kDa homodimeric flavoprotein catalyzed the oxidative decarboxylation of HSP to 2,5-dihydroxypyridine (2,5-DHP) in the presence of NADH and FAD at pH 8.0 at a specific rate of about 18.8 ± 1.85 µmol min-1 mg protein-1. Its gene was identified by searching the N-terminal amino acid residues of the purified protein against the genome draft of the bacterium. It encodes a protein composed of 391 amino acids with 62% identity to HSP hydroxylase (HspB) from Pseudomonas putida S16, which degrades nicotine via the pyrrolidine pathway. Considering the application potential of 2,5-DHP in agriculture and medicine, we developed a route to transform HSP into 2,5-DHP with recombinant HSP hydroxylase and an NADH-regenerating system (formate, NAD+ and formate dehydrogenase), via which around 0.53 ± 0.03 mM 2,5-DHP was produced from 0.76 ± 0.01 mM HSP with a molar conversion as 69.7%. This study presents the biochemical properties of the key enzyme HSP hydroxylase which is involved in the fused nicotine degradation pathway of the pyridine and pyrrolidine pathways and a new green route to biochemically synthesize functionalized 2,5-DHP. << Less
-
A multifunctional flavoprotein monooxygenase HspB for hydroxylation and C-C cleavage of 6-hydroxy-3-succinoyl-pyridine.
Ouyang X., Liu G., Guo L., Wu G., Xu P., Zhao Y.-L., Tang H.
Flavoprotein monooxygenases catalyze reactions, including hydroxylation and epoxidation, involved in the catabolism, detoxification, and biosynthesis of natural substrates and industrial contaminants. Among them, the 6-hydroxy-3-succinoyl-pyridine (HSP) monooxygenase (HspB) from <i>Pseudomonas put ... >> More
Flavoprotein monooxygenases catalyze reactions, including hydroxylation and epoxidation, involved in the catabolism, detoxification, and biosynthesis of natural substrates and industrial contaminants. Among them, the 6-hydroxy-3-succinoyl-pyridine (HSP) monooxygenase (HspB) from <i>Pseudomonas putida</i> S16 facilitates the hydroxylation and C-C bond cleavage of the pyridine ring in nicotine. However, the mechanism for biodegradation remains elusive. Here, we refined the crystal structure of HspB and elucidated the detailed mechanism behind the oxidative hydroxylation and C-C cleavage processes. Leveraging structural information about domains for binding the cofactor flavin adenine dinucleotide (FAD) and HSP substrate, we used molecular dynamics simulations and quantum/molecular mechanics calculations to demonstrate that the transfer of an oxygen atom from the reactive FAD peroxide species (C4a-hydroperoxyflavin) to the C3 atom in the HSP substrate constitutes a rate-limiting step, with a calculated reaction barrier of about 20 kcal/mol. Subsequently, the hydrogen atom was rebounded to the FAD cofactor, forming C4a-hydroxyflavin. The residue Cys218 then catalyzed the subsequent hydrolytic process of C-C cleavage. Our findings contribute to a deeper understanding of the versatile functions of flavoproteins in the natural transformation of pyridine and HspB in nicotine degradation.IMPORTANCE<i>Pseudomonas putida</i> S16 plays a pivotal role in degrading nicotine, a toxic pyridine derivative that poses significant environmental challenges. This study highlights a key enzyme, HspB (6-hydroxy-3-succinoyl-pyridine monooxygenase), in breaking down nicotine through the pyrrolidine pathway. Utilizing dioxygen and a flavin adenine dinucleotide cofactor, HspB hydroxylates and cleaves the substrate's side chain. Structural analysis of the refined HspB crystal structure, combined with state-of-the-art computations, reveals its distinctive mechanism. The crucial function of Cys218 was never discovered in its homologous enzymes. Our findings not only deepen our understanding of bacterial nicotine degradation but also open avenues for applications in both environmental cleanup and pharmaceutical development. << Less
Appl Environ Microbiol 90:e0225523-e0225523(2024) [PubMed] [EuropePMC]
-
A novel gene, encoding 6-hydroxy-3-succinoylpyridine hydroxylase, involved in nicotine degradation by Pseudomonas putida strain S16.
Tang H., Wang S., Ma L., Meng X., Deng Z., Zhang D., Ma C., Xu P.
Previous research suggested that Pseudomonas spp. may attack the pyrrolidine ring of nicotine in a way similar to mammalian metabolism, resulting in the formation of pseudooxynicotine, the direct precursor of a potent tobacco-specific lung carcinogen. In addition, the subsequent intermediates, 6-h ... >> More
Previous research suggested that Pseudomonas spp. may attack the pyrrolidine ring of nicotine in a way similar to mammalian metabolism, resulting in the formation of pseudooxynicotine, the direct precursor of a potent tobacco-specific lung carcinogen. In addition, the subsequent intermediates, 6-hydroxy-3-succinoylpyridine (HSP) and 2,5-dihydroxypyridine (DHP) in the Pseudomonas nicotine degradation pathway are two important precursors for drug syntheses. However, there is little information on the molecular mechanism for nicotine degradation via the pyrrolidine pathway until now. In this study we cloned and sequenced a 4,879-bp gene cluster involved in nicotine degradation. Intermediates N-methylmyosmine, pseudooxynicotine, 3-succinoylpyridine, HSP, and DHP were identified from resting cell reactions of the transformant containing the gene cluster and shown to be identical to those of the pyrrolidine pathway reported in wild-type strain Pseudomonas putida S16. The gene for 6-hydroxy-3-succinoylpyridine hydroxylase (HSP hydroxylase) catalyzing HSP directly to DHP was cloned, sequenced, and expressed in Escherichia coli, and the purified HSP hydroxylase (38 kDa) is NADH dependent. DNA sequence analysis of this 936-bp fragment reveals that the deduced amino acid shows no similarity with any protein of known function. << Less
Appl. Environ. Microbiol. 74:1567-1574(2008) [PubMed] [EuropePMC]
-
A novel NADH-dependent and FAD-containing hydroxylase is crucial for nicotine degradation by Pseudomonas putida.
Tang H., Yao Y., Zhang D., Meng X., Wang L., Yu H., Ma L., Xu P.
Nicotine, the main alkaloid produced by Nicotiana tabacum and other Solanaceae, is very toxic and may be a leading toxicant causing preventable disease and death, with the rise in global tobacco consumption. Several different microbial pathways of nicotine metabolism have been reported: Arthrobact ... >> More
Nicotine, the main alkaloid produced by Nicotiana tabacum and other Solanaceae, is very toxic and may be a leading toxicant causing preventable disease and death, with the rise in global tobacco consumption. Several different microbial pathways of nicotine metabolism have been reported: Arthrobacter uses the pyridine pathway, and Pseudomonas, like mammals, uses the pyrrolidine pathway. We identified and characterized a novel 6-hydroxy-3-succinoyl-pyridine (HSP) hydroxylase (HspB) using enzyme purification, peptide sequencing, and sequencing of the Pseudomonas putida S16 genome. The HSP hydroxylase has no known orthologs and converts HSP to 2,5-dihydroxy-pyridine and succinic semialdehyde, using NADH. (18)O(2) labeling experiments provided direct evidence for the incorporation of oxygen from O(2) into 2,5-dihydroxy-pyridine. The hspB gene deletion showed that this enzyme is essential for nicotine degradation, and site-directed mutagenesis identified an FAD-binding domain. This study demonstrates the importance of the newly discovered enzyme HspB, which is crucial for nicotine degradation by the Pseudomonas strain. << Less