Reaction participants Show >> << Hide
- Name help_outline trans,octa-cis-decaprenylphospho-β-D-ribofuranose Identifier CHEBI:66881 Charge -1 Formula C55H90O8P InChIKeyhelp_outline YRIPSPRNAZBQAG-VSQGLHABSA-M SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/COP([O-])(=O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline FAD Identifier CHEBI:57692 Charge -3 Formula C27H30N9O15P2 InChIKeyhelp_outline IMGVNJNCCGXBHD-UYBVJOGSSA-K SMILEShelp_outline Cc1cc2nc3c(nc(=O)[n-]c3=O)n(C[C@H](O)[C@H](O)[C@H](O)COP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c(N)ncnc34)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 172 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline trans,octa-cis-decaprenylphospho-β-D-erythro-pentofuranosid-2-ulose Identifier CHEBI:65067 Charge -1 Formula C55H88O8P InChIKeyhelp_outline UXICLCQXEMXOGQ-JOAXIEPRSA-M SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/COP([O-])(=O)O[C@@H]1O[C@H](CO)[C@@H](O)C1=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline FADH2 Identifier CHEBI:58307 Charge -2 Formula C27H33N9O15P2 InChIKeyhelp_outline YPZRHBJKEMOYQH-UYBVJOGSSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c(N)ncnc34)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 163 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33899 | RHEA:33900 | RHEA:33901 | RHEA:33902 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Analogous mechanisms of resistance to benzothiazinones and dinitrobenzamides in Mycobacterium smegmatis.
Ribeiro A.L., Degiacomi G., Ewann F., Buroni S., Incandela M.L., Chiarelli L.R., Mori G., Kim J., Contreras-Dominguez M., Park Y.S., Han S.J., Brodin P., Valentini G., Rizzi M., Riccardi G., Pasca M.R.
Tuberculosis is still a leading cause of death worldwide. The selection and spread of Mycobacterium tuberculosis multidrug-resistant (MDR-TB) and extensively drug-resistant strains (XDR-TB) is a severe public health problem. Recently, two different classes of chemical series, the benzothiazinones ... >> More
Tuberculosis is still a leading cause of death worldwide. The selection and spread of Mycobacterium tuberculosis multidrug-resistant (MDR-TB) and extensively drug-resistant strains (XDR-TB) is a severe public health problem. Recently, two different classes of chemical series, the benzothiazinones (BTZ) and the dinitrobenzamide (DNB) derivatives have been found to be highly active against M. tuberculosis, including XDR-TB strains. The target of BTZs is DprE1 protein which works in concert with DprE2 to form the heteromeric decaprenylphosphoryl-β-D-ribose 2'-epimerase, involved in Decaprenyl-Phospho-Arabinose (DPA) biosynthesis. Interestingly, it has been shown that the DNBs block the same pathway thus suggesting that both drugs could share the same target. Moreover, in Mycobacterium smegmatis the overexpression of the NfnB nitroreductase led to the inactivation of the BTZs by reduction of a critical nitro-group to an amino-group. In this work several spontaneous M. smegmatis mutants resistant to DNBs were isolated. Sixteen mutants, showing high levels of DNB resistance, exhibited a mutation in the Cys394 of DprE1. Using fluorescence titration and mass spectrometry it has been possible to monitor the binding between DprE1 and DNBs, achieving direct evidence that MSMEG_6382 is the cellular target of DNBs in mycobacteria. Additionally, M. smegmatis mutants having low levels of resistance to DNBs harbor various mutations in MSMEG_6503 gene encoding the transcriptional repressor of the nitroreductase NfnB. By LC/MS analysis it has been demonstrated that NfnB is responsible for DNB inactivation. Taken together, our data demonstrate that both DNB and BTZ drugs share common resistance mechanisms in M. smegmatis. << Less
-
Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-beta-D-ribofuranose 2'-oxidase DprE1.
Trefzer C., Skovierova H., Buroni S., Bobovska A., Nenci S., Molteni E., Pojer F., Pasca M.R., Makarov V., Cole S.T., Riccardi G., Mikusova K., Johnsson K.
Benzothiazinones (BTZs) are antituberculosis drug candidates with nanomolar bactericidal activity against tubercle bacilli. Here we demonstrate that BTZs are suicide substrates of the FAD-dependent decaprenylphosphoryl-β-D-ribofuranose 2'-oxidase DprE1, an enzyme involved in cell-wall biogenesis. ... >> More
Benzothiazinones (BTZs) are antituberculosis drug candidates with nanomolar bactericidal activity against tubercle bacilli. Here we demonstrate that BTZs are suicide substrates of the FAD-dependent decaprenylphosphoryl-β-D-ribofuranose 2'-oxidase DprE1, an enzyme involved in cell-wall biogenesis. BTZs are reduced by DprE1 to an electrophile, which then reacts in a near-quantitative manner with an active-site cysteine of DprE1, thus providing a rationale for the extraordinary potency of BTZs. Mutant DprE1 enzymes from BTZ-resistant strains reduce BTZs to inert metabolites while avoiding covalent inactivation. Our results explain the basis for drug sensitivity and resistance to an exceptionally potent class of antituberculosis agents. << Less
J. Am. Chem. Soc. 134:912-915(2012) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.