Reaction participants Show >> << Hide
- Name help_outline trans,octa-cis-decaprenylphospho-β-D-arabinofuranose Identifier CHEBI:65066 Charge -1 Formula C55H90O8P InChIKeyhelp_outline YRIPSPRNAZBQAG-VFEJOPGXSA-M SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/COP([O-])(=O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline trans,octa-cis-decaprenylphospho-β-D-erythro-pentofuranosid-2-ulose Identifier CHEBI:65067 Charge -1 Formula C55H88O8P InChIKeyhelp_outline UXICLCQXEMXOGQ-JOAXIEPRSA-M SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/COP([O-])(=O)O[C@@H]1O[C@H](CO)[C@@H](O)C1=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33895 | RHEA:33896 | RHEA:33897 | RHEA:33898 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose.
Mikusova K., Huang H., Yagi T., Holsters M., Vereecke D., D'Haeze W., Scherman M.S., Brennan P.J., McNeil M.R., Crick D.C.
The major cell wall polysaccharide of mycobacteria is a branched-chain arabinogalactan in which arabinan chains are attached to the 5 carbon of some of the 6-linked galactofuranose residues; these arabinan chains are composed exclusively of D-arabinofuranose (Araf) residues. The immediate precurso ... >> More
The major cell wall polysaccharide of mycobacteria is a branched-chain arabinogalactan in which arabinan chains are attached to the 5 carbon of some of the 6-linked galactofuranose residues; these arabinan chains are composed exclusively of D-arabinofuranose (Araf) residues. The immediate precursor of the polymerized Araf is decaprenylphosphoryl-D-Araf, which is derived from 5-phosphoribose 1-diphosphate (pRpp) in an undefined manner. On the basis of time course, feedback, and chemical reduction experiment results we propose that decaprenylphosphoryl-Araf is synthesized by the following sequence of events. (i) pRpp is transferred to a decaprenyl-phosphate molecule to form decaprenylphosphoryl-beta-D-5-phosphoribose. (ii) Decaprenylphosphoryl-beta-D-5-phosphoribose is dephosphorylated to form decaprenylphosphoryl-beta-D-ribose. (iii) The hydroxyl group at the 2 position of the ribose is oxidized and is likely to form decaprenylphosphoryl-2-keto-beta-D-erythro-pentofuranose. (iv) Decaprenylphosphoryl-2-keto-beta-D-erythro-pentofuranose is reduced to form decaprenylphosphoryl-beta-D-Araf. Thus, the epimerization of the ribosyl to an arabinosyl residue occurs at the lipid-linked level; this is the first report of an epimerase that utilizes a lipid-linked sugar as a substrate. On the basis of similarity to proteins implicated in the arabinosylation of the Azorhizobium caulidans nodulation factor, two genes were cloned from the Mycobacterium tuberculosis genome and expressed in a heterologous host, and the protein was purified. Together, these proteins (Rv3790 and Rv3791) are able to catalyze the epimerization, although neither protein individually is sufficient to support the activity. << Less
-
Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-beta-D-ribofuranose 2'-oxidase DprE1.
Trefzer C., Skovierova H., Buroni S., Bobovska A., Nenci S., Molteni E., Pojer F., Pasca M.R., Makarov V., Cole S.T., Riccardi G., Mikusova K., Johnsson K.
Benzothiazinones (BTZs) are antituberculosis drug candidates with nanomolar bactericidal activity against tubercle bacilli. Here we demonstrate that BTZs are suicide substrates of the FAD-dependent decaprenylphosphoryl-β-D-ribofuranose 2'-oxidase DprE1, an enzyme involved in cell-wall biogenesis. ... >> More
Benzothiazinones (BTZs) are antituberculosis drug candidates with nanomolar bactericidal activity against tubercle bacilli. Here we demonstrate that BTZs are suicide substrates of the FAD-dependent decaprenylphosphoryl-β-D-ribofuranose 2'-oxidase DprE1, an enzyme involved in cell-wall biogenesis. BTZs are reduced by DprE1 to an electrophile, which then reacts in a near-quantitative manner with an active-site cysteine of DprE1, thus providing a rationale for the extraordinary potency of BTZs. Mutant DprE1 enzymes from BTZ-resistant strains reduce BTZs to inert metabolites while avoiding covalent inactivation. Our results explain the basis for drug sensitivity and resistance to an exceptionally potent class of antituberculosis agents. << Less
J. Am. Chem. Soc. 134:912-915(2012) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.