Enzymes
UniProtKB help_outline | 866 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (E)-ferulate Identifier CHEBI:29749 Charge -1 Formula C10H9O4 InChIKeyhelp_outline KSEBMYQBYZTDHS-HWKANZROSA-M SMILEShelp_outline COc1cc(\C=C\C([O-])=O)ccc1O 2D coordinates Mol file for the small molecule Search links Involved in 15 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-methoxy-4-vinylphenol Identifier CHEBI:42438 (CAS: 7786-61-0) help_outline Charge 0 Formula C9H10O2 InChIKeyhelp_outline YOMSJEATGXXYPX-UHFFFAOYSA-N SMILEShelp_outline COc1cc(C=C)ccc1O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33807 | RHEA:33808 | RHEA:33809 | RHEA:33810 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae.
Mukai N., Masaki K., Fujii T., Kawamukai M., Iefuji H.
The volatile phenols, to which Saccharomyces cerevisiae converts from phenylacrylic acids including ferulic acid, p-coumaric acid, and cinnamic acid, generate off-flavors in alcoholic beverages such as beer and wine. Using gene disruptants, transformants and cell-free extracts of these strains, we ... >> More
The volatile phenols, to which Saccharomyces cerevisiae converts from phenylacrylic acids including ferulic acid, p-coumaric acid, and cinnamic acid, generate off-flavors in alcoholic beverages such as beer and wine. Using gene disruptants, transformants and cell-free extracts of these strains, we have verified that the adjacent PAD1 (phenylacrylic acid decarboxylase, YDR538W) and FDC1 (ferulic acid decarboxylase, YDR539W) genes are essential for the decarboxylation of phenylacrylic acids in S. cerevisiae. Pad1p and Fdc1p are homologous with UbiX and UbiD, respectively, in the ubiquinone synthetic pathway of Escherichia coli. However, ubiquinone was detected quantitatively in all of the yeast single-deletion mutants, Delta pad1, Delta fdc1, and double-deletion mutant, Delta pad1 Delta fdc1. << Less
J. Biosci. Bioeng. 109:564-569(2010) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Structure and mechanism of ferulic acid decarboxylase (FDC1) from Saccharomyces cerevisiae.
Bhuiya M.W., Lee S.G., Jez J.M., Yu O.
The nonoxidative decarboxylation of aromatic acids occurs in a range of microbes and is of interest for bioprocessing and metabolic engineering. Although phenolic acid decarboxylases provide useful tools for bioindustrial applications, the molecular bases for how these enzymes function are only be ... >> More
The nonoxidative decarboxylation of aromatic acids occurs in a range of microbes and is of interest for bioprocessing and metabolic engineering. Although phenolic acid decarboxylases provide useful tools for bioindustrial applications, the molecular bases for how these enzymes function are only beginning to be examined. Here we present the 2.35-Å-resolution X-ray crystal structure of the ferulic acid decarboxylase (FDC1; UbiD) from Saccharomyces cerevisiae. FDC1 shares structural similarity with the UbiD family of enzymes that are involved in ubiquinone biosynthesis. The position of 4-vinylphenol, the product of p-coumaric acid decarboxylation, in the structure identifies a large hydrophobic cavity as the active site. Differences in the β2e-α5 loop of chains in the crystal structure suggest that the conformational flexibility of this loop allows access to the active site. The structure also implicates Glu285 as the general base in the nonoxidative decarboxylation reaction catalyzed by FDC1. Biochemical analysis showed a loss of enzymatic activity in the E285A mutant. Modeling of 3-methoxy-4-hydroxy-5-decaprenylbenzoate, a partial structure of the physiological UbiD substrate, in the binding site suggests that an ∼30-Å-long pocket adjacent to the catalytic site may accommodate the isoprenoid tail of the substrate needed for ubiquinone biosynthesis in yeast. The three-dimensional structure of yeast FDC1 provides a template for guiding protein engineering studies aimed at optimizing the efficiency of aromatic acid decarboxylation reactions in bioindustrial applications. << Less
Appl. Environ. Microbiol. 81:4216-4223(2015) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Gene cloning, transcriptional analysis, purification, and characterization of phenolic acid decarboxylase from Bacillus subtilis.
Cavin J.-F., Dartois V., Divies C.
Bacillus subtilis displays a substrate-inducible decarboxylating activity with the following three phenolic acids: ferulic, p-coumaric, and caffeic acids. Based on DNA sequence homologies between the Bacillus pumilus ferulate decarboxylase gene (fdc) (A. Zago, G. Degrassi, and C. V. Bruschi, Appl. ... >> More
Bacillus subtilis displays a substrate-inducible decarboxylating activity with the following three phenolic acids: ferulic, p-coumaric, and caffeic acids. Based on DNA sequence homologies between the Bacillus pumilus ferulate decarboxylase gene (fdc) (A. Zago, G. Degrassi, and C. V. Bruschi, Appl. Environ. Microbiol. 61:4484-4486, 1995) and the Lactobacillus plantarum p-coumarate decarboxylase gene (pdc) (J.-F. Cavin, L. Barthelmebs, and C. Diviès, Appl. Environ. Microbiol. 63:1939-1944, 1997), a DNA probe of about 300 nucleotides for the L. plantarum pdc gene was used to screen a B. subtilis genomic library in order to clone the corresponding gene in this bacterium. One clone was detected with this heterologous probe, and this clone exhibited phenolic acid decarboxylase (PAD) activity. The corresponding 5-kb insertion was partially sequenced and was found to contain a 528-bp open reading frame coding for a 161-amino-acid protein exhibiting 71 and 84% identity with the pdc- and fdc-encoded enzymes, respectively. The PAD gene (pad) is transcriptionally regulated by p-coumaric, ferulic, or caffeic acid; these three acids are the three substrates of PAD. The pad gene was overexpressed constitutively in Escherichia coli, and the stable purified enzyme was characterized. The difference in substrate specificity between this PAD and other PADs seems to be related to a few differences in the amino acid sequence. Therefore, this novel enzyme should facilitate identification of regions involved in catalysis and substrate specificity. << Less
Appl. Environ. Microbiol. 64:1466-1471(1998) [PubMed] [EuropePMC]
-
New cofactor supports alpha,beta-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition.
Payne K.A., White M.D., Fisher K., Khara B., Bailey S.S., Parker D., Rattray N.J., Trivedi D.K., Goodacre R., Beveridge R., Barran P., Rigby S.E., Scrutton N.S., Hay S., Leys D.
The bacterial ubiD and ubiX or the homologous fungal fdc1 and pad1 genes have been implicated in the non-oxidative reversible decarboxylation of aromatic substrates, and play a pivotal role in bacterial ubiquinone (also known as coenzyme Q) biosynthesis or microbial biodegradation of aromatic comp ... >> More
The bacterial ubiD and ubiX or the homologous fungal fdc1 and pad1 genes have been implicated in the non-oxidative reversible decarboxylation of aromatic substrates, and play a pivotal role in bacterial ubiquinone (also known as coenzyme Q) biosynthesis or microbial biodegradation of aromatic compounds, respectively. Despite biochemical studies on individual gene products, the composition and cofactor requirement of the enzyme responsible for in vivo decarboxylase activity remained unclear. Here we show that Fdc1 is solely responsible for the reversible decarboxylase activity, and that it requires a new type of cofactor: a prenylated flavin synthesized by the associated UbiX/Pad1. Atomic resolution crystal structures reveal that two distinct isomers of the oxidized cofactor can be observed, an isoalloxazine N5-iminium adduct and a N5 secondary ketimine species with markedly altered ring structure, both having azomethine ylide character. Substrate binding positions the dipolarophile enoic acid group directly above the azomethine ylide group. The structure of a covalent inhibitor-cofactor adduct suggests that 1,3-dipolar cycloaddition chemistry supports reversible decarboxylation in these enzymes. Although 1,3-dipolar cycloaddition is commonly used in organic chemistry, we propose that this presents the first example, to our knowledge, of an enzymatic 1,3-dipolar cycloaddition reaction. Our model for Fdc1/UbiD catalysis offers new routes in alkene hydrocarbon production or aryl (de)carboxylation. << Less
Nature 522:497-501(2015) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase.
Lin F., Ferguson K.L., Boyer D.R., Lin X.N., Marsh E.N.
The decarboxylation of antimicrobial aromatic acids such as phenylacrylic acid (cinnamic acid) and ferulic acid by yeast requires two enzymes described as phenylacrylic acid decarboxylase (PAD1) and ferulic acid decarboxylase (FDC). These enzymes are of interest for various biotechnological applic ... >> More
The decarboxylation of antimicrobial aromatic acids such as phenylacrylic acid (cinnamic acid) and ferulic acid by yeast requires two enzymes described as phenylacrylic acid decarboxylase (PAD1) and ferulic acid decarboxylase (FDC). These enzymes are of interest for various biotechnological applications, such as the production of chemical feedstocks from lignin under mild conditions. However, the specific role of each protein in catalyzing the decarboxylation reaction remains unknown. To examine this, we have overexpressed and purified both PAD1 and FDC from E. coli. We demonstrate that PAD1 is a flavin mononucleotide (FMN)-containing protein. However, it does not function as a decarboxylase. Rather, PAD1 catalyzes the formation of a novel, diffusible cofactor required by FDC for decarboxylase activity. Coexpression of FDC and PAD1 results in the production of FDC with high levels cofactor bound. Holo-FDC catalyzes the decarboxylation of phenylacrylic acid, coumaric acid and ferulic acid with apparent kcat ranging from 1.4-4.6 s(-1). The UV-visible and mass spectra of the cofactor indicate that it appears to be a novel, modified form of reduced FMN; however, its instability precluded determination of its structure. The E. coli enzymes UbiX and UbiD are related by sequence to PAD1 and FDC respectively and are involved in the decarboxylation of 4-hydroxy-3-octaprenylbenzoic acid, an intermediate in ubiquinone biosynthesis. We found that endogenous UbiX can also activate FDC. This implies that the same cofactor is required for decarboxylation of 4-hydroxy-3-polyprenylbenzoic acid by UbiD and suggests a wider role for this cofactor in metabolism. << Less
ACS Chem. Biol. 10:1137-1144(2015) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.