Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline a 1,2-diacyl-sn-glycerol Identifier CHEBI:17815 Charge 0 Formula C5H6O5R2 SMILEShelp_outline OC[C@@H](COC([*])=O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 197 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CDP-N-methylethanolamine Identifier CHEBI:57547 Charge -1 Formula C12H21N4O11P2 InChIKeyhelp_outline RSPRLQAZJOAGFP-QCNRFFRDSA-M SMILEShelp_outline C[NH2+]CCOP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1ccc(N)nc1=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1,2-diacyl-sn-glycero-3-phospho-N-methylethanolamine Identifier CHEBI:64573 Charge 0 Formula C8H14NO8PR2 SMILEShelp_outline C[NH2+]CCOP([O-])(=O)OC[C@@H](COC([*])=O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CMP Identifier CHEBI:60377 Charge -2 Formula C9H12N3O8P InChIKeyhelp_outline IERHLVCPSMICTF-XVFCMESISA-L SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 164 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33771 | RHEA:33772 | RHEA:33773 | RHEA:33774 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
sn-1,2-diacylglycerol choline- and ethanolaminephosphotransferases in Saccharomyces cerevisiae. Mixed micellar analysis of the CPT1 and EPT1 gene products.
Hjelmstad R.H., Bell R.M.
The Saccharomyces cerevisiae CPT1 and EPT1 genes are structural genes encoding distinct sn-1,2-diacylglycerol choline- and ethanolaminephosphotransferases. A haploid cpt1 ept1 double null mutant lacked detectable choline- and ethanolaminephosphotransferase activity but was viable for growth, estab ... >> More
The Saccharomyces cerevisiae CPT1 and EPT1 genes are structural genes encoding distinct sn-1,2-diacylglycerol choline- and ethanolaminephosphotransferases. A haploid cpt1 ept1 double null mutant lacked detectable choline- and ethanolaminephosphotransferase activity but was viable for growth, establishing that these enzymes are nonessential. The activities of the CPT1 and EPT1 gene products were independently studied in membranes prepared from strains mutant in the cognate locus using mixed micellar assays. Both enzymes absolutely required phospholipid cofactors; half-maximal activation was observed at low mole fractions, suggesting that a small number of phospholipid molecules are required. The activities of the CPT1 and EPT1 gene products were compared with respect to dioleoylglycerol dependence, CDP-aminoalcohol specificity, phospholipid activation, and inhibition by CMP. The EPT1 gene product utilized CDP-ethanolamine, -monomethylethanolamine, -dimethylethanolamine, and -choline to significant extents, while the CPT1 gene product manifested relative specificity for CDP-choline and -dimethylethanolamine. The CPT1 and EPT1 gene products exhibited differing properties with respect to phospholipid activation, but this difference was dependent on the CDP-aminoalcohol substrate. In contrast, the two enzymes could be distinguished on the basis of their dioleoylglycerol dependencies, activation by Mg2+, and CMP inhibition profiles regardless of the CDP-aminoalcohol substrate employed. These studies provide the first definitive kinetic properties of individual choline- and ethanolaminephosphotransferases. << Less
J. Biol. Chem. 266:4357-4365(1991) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.