Reaction participants Show >> << Hide
- Name help_outline (9Z)-octadecenoate Identifier CHEBI:30823 (CAS: 115-06-0) help_outline Charge -1 Formula C18H33O2 InChIKeyhelp_outline ZQPPMHVWECSIRJ-KTKRTIGZSA-M SMILEShelp_outline CCCCCCCC\C=C/CCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 114 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33655 | RHEA:33656 | RHEA:33657 | RHEA:33658 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline |
Related reactions help_outline
More general form(s) of this reaction
-
RHEA:38880
a fatty acid(in) => a fatty acid(out)
Publications
-
Identification of the major intestinal fatty acid transport protein.
Stahl A., Hirsch D.J., Gimeno R.E., Punreddy S., Ge P., Watson N., Patel S., Kotler M., Raimondi A., Tartaglia L.A., Lodish H.F.
While intestinal transport systems for metabolites such as carbohydrates have been well characterized, the molecular mechanisms of fatty acid (FA) transport across the apical plasmalemma of enterocytes have remained largely unclear. Here, we show that FATP4, a member of a large family of FA transp ... >> More
While intestinal transport systems for metabolites such as carbohydrates have been well characterized, the molecular mechanisms of fatty acid (FA) transport across the apical plasmalemma of enterocytes have remained largely unclear. Here, we show that FATP4, a member of a large family of FA transport proteins (FATPs), is expressed at high levels on the apical side of mature enterocytes in the small intestine. Further, overexpression of FATP4 in 293 cells facilitates uptake of long chain FAs with the same specificity as enterocytes, while reduction of FATP4 expression in primary enterocytes by antisense oligonucleotides inhibits FA uptake by 50%. This suggests that FATP4 is the principal fatty acid transporter in enterocytes and may constitute a novel target for antiobesity therapy. << Less
Mol. Cell 4:299-308(1999) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Characterization of a heart-specific fatty acid transport protein.
Gimeno R.E., Ortegon A.M., Patel S., Punreddy S., Ge P., Sun Y., Lodish H.F., Stahl A.
Fatty acids are a major source of energy for cardiac myocytes. Changes in fatty acid metabolism have been implicated as causal in diabetes and cardiac disease. The mechanism by which long chain fatty acids (LCFAs) enter cardiac myocytes is not well understood but appears to occur predominantly by ... >> More
Fatty acids are a major source of energy for cardiac myocytes. Changes in fatty acid metabolism have been implicated as causal in diabetes and cardiac disease. The mechanism by which long chain fatty acids (LCFAs) enter cardiac myocytes is not well understood but appears to occur predominantly by protein-mediated transport. Here we report the cloning, expression pattern, and subcellular localization of a novel member of the fatty acid transport protein (FATP) family termed FATP6. FATP6 is principally expressed in the heart where it is the predominant FATP family member. Similar to other FATPs, transient and stable transfection of FATP6 into 293 cells enhanced uptake of LCFAs. FATP6 mRNA was localized to cardiac myocytes by in situ hybridization. Immunofluorescence microscopy of FATP6 in monkey and murine hearts revealed that the protein is exclusively located on the sarcolemma. FATP6 was restricted in its distribution to areas of the plasma membrane juxtaposed with small blood vessels. In these membrane domains FATP6 also colocalizes with another molecule involved in LCFA uptake, CD36. These findings suggest that FATP6 is involved in heart LCFA uptake, in which it may play a role in the pathogenesis of lipid-related cardiac disorders. << Less
J. Biol. Chem. 278:16039-16044(2003) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
The acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular utilization.
Faergeman N.J., Black P.N., Zhao X.D., Knudsen J., DiRusso C.C.
Exogenous long-chain fatty acids are activated to coenzyme A derivatives prior to metabolic utilization. In the yeast Saccharomyces cerevisiae, the activation of these compounds prior to metabolic utilization proceeds through the fatty acyl-CoA synthetases Faa1p and Faa4p. Faa1p or Faa4p are essen ... >> More
Exogenous long-chain fatty acids are activated to coenzyme A derivatives prior to metabolic utilization. In the yeast Saccharomyces cerevisiae, the activation of these compounds prior to metabolic utilization proceeds through the fatty acyl-CoA synthetases Faa1p and Faa4p. Faa1p or Faa4p are essential for long-chain fatty acid import, suggesting that one or both of these enzymes are components of the fatty acid transport system, which also includes Fat1p. By monitoring the intracellular accumulation of the fluorescent long-chain fatty acid analogue 4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid, long-chain fatty acid transport was shown to be severely restricted in a faa1 Delta faa4 Delta strain. These data established for the first time a mechanistic linkage between the import and activation of exogenous fatty acids in yeast. To investigate this linkage further, oleoyl CoA levels were defined following incubation of wild type and mutant cells with limiting concentrations of exogenous oleate. These studies demonstrated oleoyl CoA levels were reduced to less than 10% wild-type levels in faa1 Delta and faa1 Delta faa4 Delta strains. Defects in metabolic utilization and intracellular trafficking were also found in the fatty acyl-CoA synthetase-deficient strains. The faa1 Delta faa4 Delta strain had a marked reduction in endogenous acyl-CoA pools, suggesting these enzymes play a role in maintenance of endogenous acyl-CoA pools, metabolism and trafficking. In addition, this strain had levels of in vivo beta-oxidation of exogenous oleate reduced 3-fold when compared with the isogenic parent. Northern analyses demonstrated an additional defect in fatty acid trafficking as FAA1 or FAA4 were required for the transcriptional regulation of the genes encoding the peroxisomal enzymes acyl-CoA oxidase (POX1) and medium-chain acyl-CoA synthetase (FAA2). These data support the hypothesis that fatty acyl-CoA synthetase (Faa1p or Faa4p) functions as a component of the fatty acid import system by linking import and activation of exogenous fatty acids to intracellular utilization and signaling. << Less
-
On the mechanism of oleate transport across human brain microvessel endothelial cells.
Mitchell R.W., Edmundson C.L., Miller D.W., Hatch G.M.
The blood-brain barrier formed by the brain capillary endothelial cells provides a protective barrier between the systemic blood and the extracellular environment of the CNS. As most fatty acids in the brain enter from the blood, we examined the mechanism of oleate (C18:1) transport across primary ... >> More
The blood-brain barrier formed by the brain capillary endothelial cells provides a protective barrier between the systemic blood and the extracellular environment of the CNS. As most fatty acids in the brain enter from the blood, we examined the mechanism of oleate (C18:1) transport across primary human brain microvessel endothelial cells (HBMEC). The permeability of [1-14C]oleate was determined using confluent cells grown on Transwell inserts in both the absence or presence of bovine serum albumin in the basolateral media, and following inhibition of various fatty acid transporters. The passage of [1-14C]oleate across confluent HBMEC monolayers was significantly enhanced when fatty acid free albumin was present in the basolateral media. The presence of the non-specific fatty acid uptake inhibitor phloretin significantly decreased [1-14C]oleate uptake by HBMEC and the subsequent release of [1-14C]oleate into the basolateral medium. Knockdown of fatty acid transport protein-1 or fatty acid translocase/CD36 significantly decreased [1-14C]oleate transport across the HBMEC monolayer from either apical as well as basolateral sides. The findings indicate that a fatty acid acceptor is a requirement for oleate transport across HBMEC monolayers. In addition, transport of oleate across HBMEC is, in part, a transcellular process mediated by fatty acid transport proteins. << Less