Reaction participants Show >> << Hide
- Name help_outline UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucuronate Identifier CHEBI:62245 Charge -2 Formula C17H24N4O17P2 InChIKeyhelp_outline RRAQYLXLCYIZBB-HHKCBAECSA-L SMILEShelp_outline [C@@H]1(OP(OP(=O)(OC[C@@H]2[C@H]([C@H]([C@@H](O2)N3C=CC(NC3=O)=O)O)O)[O-])(=O)[O-])[C@H](NC(C)=O)[C@@H]([NH3+])[C@H](O)[C@H](O1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 361 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronate Identifier CHEBI:58745 (Beilstein: 11962414) help_outline Charge -3 Formula C19H25N4O18P2 InChIKeyhelp_outline GZLIMKLKXDFTJR-LTMKHLKMSA-K SMILEShelp_outline CC(=O)N[C@H]1[C@H](O)[C@H](O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@@H]1NC(C)=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33587 | RHEA:33588 | RHEA:33589 | RHEA:33590 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa.
Westman E.L., McNally D.J., Charchoglyan A., Brewer D., Field R.A., Lam J.S.
The lipopolysaccharide of Pseudomonas aeruginosa PAO1 contains an unusual sugar, 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid (d-ManNAc3NAcA). wbpB, wbpE, and wbpD are thought to encode oxidase, transaminase, and N-acetyltransferase enzymes. To characterize their functions, recombinant proteins w ... >> More
The lipopolysaccharide of Pseudomonas aeruginosa PAO1 contains an unusual sugar, 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid (d-ManNAc3NAcA). wbpB, wbpE, and wbpD are thought to encode oxidase, transaminase, and N-acetyltransferase enzymes. To characterize their functions, recombinant proteins were overexpressed and purified from heterologous hosts. Activities of His(6)-WbpB and His(6)-WbpE were detected only when both proteins were combined in the same reaction. Using a direct MALDI-TOF mass spectrometry approach, we identified ions that corresponded to the predicted products of WbpB (UDP-3-keto-d-GlcNAcA) and WbpE (UDP-d-GlcNAc3NA) in the coupled enzyme-substrate reaction. Additionally, in reactions involving WbpB, WbpE, and WbpD, an ion consistent with the expected product of WbpD (UDP-d-GlcNAc3NAcA) was identified. Preparative quantities of UDP-d-GlcNAc3NA and UDP-d-GlcNAc3NAcA were enzymatically synthesized. These compounds were purified by high-performance liquid chromatography, and their structures were elucidated by NMR spectroscopy. This is the first report of the functional characterization of these proteins, and the enzymatic synthesis of UDP-d-GlcNAc3NA and UDP-d-GlcNAc3NAcA. << Less
J. Biol. Chem. 284:11854-11862(2009) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1.
Larkin A., Imperiali B.
The B-band O-antigen of the lipopolysaccharide found in the opportunistic pathogen Pseudomonas aeruginosa PAO1 (serotype O5) comprises a repeating trisaccharide unit that is critical for virulence and protection from host defense systems. One of the carbohydrates in this repeating unit, the rare d ... >> More
The B-band O-antigen of the lipopolysaccharide found in the opportunistic pathogen Pseudomonas aeruginosa PAO1 (serotype O5) comprises a repeating trisaccharide unit that is critical for virulence and protection from host defense systems. One of the carbohydrates in this repeating unit, the rare diacetylated aminuronic acid derivative 2,3-diacetamido-2,3-dideoxy-beta-d-mannuronic acid (ManNAc(3NAc)A), is thought to be produced by five enzymes (WbpA, WbpB, WbpE, WbpD, and WbpI) in a stepwise manner starting from UDP-GlcNAc. Although the genes responsible for the biosynthesis of this sugar are known, only two of the five encoded proteins (WbpA and WbpI) have been thoroughly investigated. In this report, we describe the cloning, overexpression, purification, and biochemical characterization of the three central enzymes in this pathway, WbpB, WbpE, and WbpD. Using a combination of capillary electrophoresis, RP-HPLC, and NMR spectroscopy, we show that WbpB and WbpE are a dehydrogenase/aminotransferase pair that converts UDP-GlcNAcA to UDP-GlcNAc(3NH(2))A in a coupled reaction via a unique NAD(+) recycling pathway. In addition, we confirm that WbpD catalyzes the acetylation of UDP-GlcNAc(3NH(2))A to give UDP-GlcNAc(3NAc)A. Notably, WbpA, WbpB, WbpE, WbpD, and WbpI can be combined in vitro to generate UDP-ManNAc(3NAc)A in a single reaction vessel, thereby providing supplies of this complex glycosyl donor for future studies of lipopolysaccharide assembly. This work completes the biochemical characterization of the enzymes in this pathway and provides novel targets for potential therapeutics to combat infections with drug resistant P. aeruginosa strains. << Less
Biochemistry 48:5446-5455(2009) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.