Reaction participants Show >> << Hide
- Name help_outline an N-acyl-(4R)-4-hydroxysphinganine Identifier CHEBI:31998 Charge 0 Formula C19H38NO4R SMILEShelp_outline CCCCCCCCCCCCCC[C@@H](O)[C@@H](O)[C@H](CO)NC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 38 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (4R)-hydroxysphinganine Identifier CHEBI:64124 Charge 1 Formula C18H40NO3 InChIKeyhelp_outline AERBNCYCJBRYDG-KSZLIROESA-O SMILEShelp_outline CCCCCCCCCCCCCC[C@@H](O)[C@@H](O)[C@@H]([NH3+])CO 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a fatty acid Identifier CHEBI:28868 Charge -1 Formula CO2R SMILEShelp_outline [O-]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,526 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33555 | RHEA:33556 | RHEA:33557 | RHEA:33558 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Reactome help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Cloning and characterization of a novel human alkaline ceramidase. A mammalian enzyme that hydrolyzes phytoceramide.
Mao C., Xu R., Szulc Z.M., Bielawska A., Galadari S.H., Obeid L.M.
Ceramidases are enzymes involved in regulating cellular levels of ceramides, sphingoid bases, and their phosphates. Based on sequence homology to the yeast alkaline ceramidases YPC1p (Mao, C., Xu, R., Bielawska, A., and Obeid, L. M. (2000) J. Biol. Chem. 275, 6876--6884) and YDC1p (Mao, C., Xu, R. ... >> More
Ceramidases are enzymes involved in regulating cellular levels of ceramides, sphingoid bases, and their phosphates. Based on sequence homology to the yeast alkaline ceramidases YPC1p (Mao, C., Xu, R., Bielawska, A., and Obeid, L. M. (2000) J. Biol. Chem. 275, 6876--6884) and YDC1p (Mao, C., Xu, R., Bielawska, A., Szulc, Z. M., and Obeid, L. M. (2000) J. Biol Chem. 275, 31369--31378), we report the identification and cloning of a cDNA encoding for a novel human alkaline ceramidase (aPHC) that hydrolyzes phytoceramide selectively. Northern blot analysis showed that aPHC was ubiquitously expressed, with the highest expression in placenta. Green fluorescent protein tagging showed that it was localized in both the Golgi apparatus and endoplasmic reticulum. Overexpression of aPHC in mammalian cells elevated in vitro ceramidase activity toward N-4-nitrobenz-2-oxa-1,3-diazole-C(12)-phytoceramide. Its expression in a yeast mutant strain devoid of any ceramidase activity restored the ceramidase activity and caused an increase in the hydrolysis of phytoceramide in yeast cells, thus leading to the decreased biosynthesis of sphingolipids. These data collectively suggest that, similar to the yeast phytoceramidase YPC1p, aPHC has phytoceramidase activity both in vitro and in cells; hence, it is a functional homolog of the yeast phytoceramidase YPC1p. However, in contrast to YPC1p, aPHC exhibited no reverse activity of ceramidase either in vitro or in cells. Biochemical characterization showed that aPHC had a pH optimum of 9.5, was activated by Ca(2+), but was inhibited by Zn(2+) and sphingosine. Substrate specificity showed that aPHC hydrolyzed phytoceramide preferentially. Together, these data demonstrate that aPHC is a novel human alkaline phytoceramidase, the first mammalian alkaline ceramidase to be identified as being specific for the hydrolysis of phytoceramide. << Less
-
Lag1p and Lac1p are essential for the acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae.
Schorling S., Vallee B., Barz W.P., Riezman H., Oesterhelt D.
Lag1p and Lac1p are two homologous transmembrane proteins of the endoplasmic reticulum in Saccharomyces cerevisiae. Homologous genes have been found in a wide variety of eukaryotes. In yeast, both genes, LAC1 and LAG1, are required for efficient endoplasmic reticulum-to-Golgi transport of glycosyl ... >> More
Lag1p and Lac1p are two homologous transmembrane proteins of the endoplasmic reticulum in Saccharomyces cerevisiae. Homologous genes have been found in a wide variety of eukaryotes. In yeast, both genes, LAC1 and LAG1, are required for efficient endoplasmic reticulum-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins. In this study, we show that lag1 Delta lac1 Delta cells have reduced sphingolipid levels due to a block of the fumonisin B1-sensitive and acyl-CoA-dependent ceramide synthase reaction. The sphingolipid synthesis defect in lag1 Delta lac1 Delta cells can be partially corrected by overexpression of YPC1 or YDC1, encoding ceramidases that have been reported to have acyl-CoA-independent ceramide synthesis activity. Quadruple mutant cells (lag1 Delta lac1 Delta ypc1 Delta ydc1 Delta) do not make any sphingolipids, but are still viable probably because they produce novel lipids. Moreover, lag1 Delta lac1 Delta cells are resistant to aureobasidin A, an inhibitor of the inositolphosphorylceramide synthase, suggesting that aureobasidin A may be toxic because it leads to increased ceramide levels. Based on these data, LAG1 and LAC1 are the first genes to be identified that are required for the fumonisin B1-sensitive and acyl-CoA-dependent ceramide synthase reaction. << Less
Mol. Biol. Cell 12:3417-3427(2001) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Expression, purification, and characterization of a recombinant neutral ceramidase from Mycobacterium tuberculosis.
Okino N., Ikeda R., Ito M.
Ceramidase (CDase) catalyzes the hydrolysis of ceramide (Cer) to sphingosine (Sph) and fatty acid. We have reported the molecular cloning and preliminary characterization of the Mycobacterium CDase (MtCDase) (J. Biol. Chem., 274, 36616-36622 (1999)). To determine its function further, MtCDase was ... >> More
Ceramidase (CDase) catalyzes the hydrolysis of ceramide (Cer) to sphingosine (Sph) and fatty acid. We have reported the molecular cloning and preliminary characterization of the Mycobacterium CDase (MtCDase) (J. Biol. Chem., 274, 36616-36622 (1999)). To determine its function further, MtCDase was expressed in Escherichia coli and purified by Ni-Sepharose and gelfiltration. The purified recombinant enzyme showed a single band and a molecular weight estimated to be 71 kDa on SDS-PAGE. It had a pH optimum at 8.0-9.0 and quite broad specificity for various Cers. Of the Cers of different fatty acid moieties tested, those composed of C6-C24 fatty acids were well hydrolyzed, and Cers with mono unsaturated fatty acids were much more hydrolyzed than those with saturated fatty acids. Using N-dodecanoyl-7-nitrobenz-2-oxa-1,3-4-diazole (NBD)-D-erythro-sphingosine (C12-NBD-Cer) as substrates, the reaction followed normal Michaelis-Menten kinetics. The apparent Km and Vmax values for C12-NBD-Cer were 98.7 muM and 21.1 pmol/min respectively. The purified enzyme also catalyzed the synthesis of Cer in vitro, using NBD-labeled dodecanoic acid and Sph as substrates. << Less
Biosci. Biotechnol. Biochem. 74:316-321(2010) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.