Enzymes
UniProtKB help_outline | 4 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline prephenate Identifier CHEBI:29934 (Beilstein: 3682733) help_outline Charge -2 Formula C10H8O6 InChIKeyhelp_outline FPWMCUPFBRFMLH-XGAOUMNUSA-L SMILEShelp_outline O[C@H]1C=C[C@](CC(=O)C([O-])=O)(C=C1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-[(4R)-4-hydroxycyclohexa-1,5-dien-1-yl]-2-oxopropanoate Identifier CHEBI:84354 Charge -1 Formula C9H9O4 InChIKeyhelp_outline HDHFXEPVMQZSFA-ZETCQYMHSA-M SMILEShelp_outline O[C@@H]1CC=C(CC(=O)C([O-])=O)C=C1 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33499 | RHEA:33500 | RHEA:33501 | RHEA:33502 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Investigation of anticapsin biosynthesis reveals a four-enzyme pathway to tetrahydrotyrosine in Bacillus subtilis.
Mahlstedt S.A., Walsh C.T.
Bacillus subtilis produces the antibiotic anticapsin as an L-Ala-L-anticapsin dipeptide precursor known as bacilysin, whose synthesis is encoded by the bacA-D genes and the adjacent ywfGH genes. To evaluate the biosynthesis of the epoxycyclohexanone amino acid anticapsin from the primary metabolit ... >> More
Bacillus subtilis produces the antibiotic anticapsin as an L-Ala-L-anticapsin dipeptide precursor known as bacilysin, whose synthesis is encoded by the bacA-D genes and the adjacent ywfGH genes. To evaluate the biosynthesis of the epoxycyclohexanone amino acid anticapsin from the primary metabolite prephenate, we have overproduced, purified, and characterized the activity of the BacA, BacB, YwfH, and YwfG proteins. BacA is an unusual prephenate decarboxylase that avoids the typical aromatization of the cyclohexadienol ring by protonating C(8) to produce an isomerized structure. BacB then catalyzes an allylic isomerization, generating a conjugated dienone with a 295 nm chromophore. Both the BacA and BacB products are regioisomers of H(2)HPP (dihydro-4-hydroxyphenylpyruvate). The BacB product is then a substrate for the short chain reductase YwfH which catalyzes the conjugate addition of hydride at the C(4) olefinic terminus using NADH to yield the cyclohexenol-containing tetrahydro-4-hydroxyphenylpyruvate H(4)HPP. In turn, this keto acid is a substrate for YwfG, which promotes transamination (with L-Phe as amino donor), to form tetrahydrotyrosine (H(4)Tyr). Thus BacA, BacB, YwfH, and YwfG act in sequence in a four enzyme pathway to make H(4)Tyr, which has not previously been identified in B. subtilis but is a recognized building block in cyanobacterial nonribosomal peptides such as micropeptins and aeruginopeptins. << Less
Biochemistry 49:912-923(2010) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Prephenate decarboxylases: a new prephenate-utilizing enzyme family that performs nonaromatizing decarboxylation en route to diverse secondary metabolites.
Mahlstedt S., Fielding E.N., Moore B.S., Walsh C.T.
Prephenate is the direct precursor of phenylpyruvate and 4-hydroxyphenylpyruvate in the biogenesis of phenylalanine and tyrosine by action of the decarboxylative, aromatizing enzymes prephenate dehydratase and dehydrogenase, respectively. The recent characterization of BacA in bacilysin biosynthes ... >> More
Prephenate is the direct precursor of phenylpyruvate and 4-hydroxyphenylpyruvate in the biogenesis of phenylalanine and tyrosine by action of the decarboxylative, aromatizing enzymes prephenate dehydratase and dehydrogenase, respectively. The recent characterization of BacA in bacilysin biosynthesis as a nonaromatizing decarboxylase reveals a new route from prephenate in the biosynthesis of nonproteinogenic amino acids. This study describes two additional enzymes, AerD from Planktothrix agardhii and SalX from Salinispora tropica, that utilize the central building block prephenate for flux down distinct pathways to amino acid products, representing a new metabolic fate for prephenate and establishing a new family of nonaromatizing prephenate decarboxylases. << Less
-
Olefin isomerization regiochemistries during tandem action of BacA and BacB on prephenate in bacilysin biosynthesis.
Parker J.B., Walsh C.T.
BacA and BacB, the first two enzymes of the bacilysin pathway, convert prephenate to an exocylic regioisomer of dihydrohydroxyphenylpyruvate (ex-H(2)HPP) on the way to the epoxycyclohexanone warhead in the dipeptide antibiotic, bacilysin. BacA decarboxylates prephenate without aromatization, conve ... >> More
BacA and BacB, the first two enzymes of the bacilysin pathway, convert prephenate to an exocylic regioisomer of dihydrohydroxyphenylpyruvate (ex-H(2)HPP) on the way to the epoxycyclohexanone warhead in the dipeptide antibiotic, bacilysin. BacA decarboxylates prephenate without aromatization, converting the 1,4-diene in prephenate to the endocyclic 1,3-diene in Δ(4),Δ(8)-dihydrohydroxyphenylpyruvate (en-H(2)HPP). BacB then performs an allylic isomerization to bring the diene into conjugation with the 2-ketone in the product Δ(3),Δ(5)-dihydrohydroxyphenylpyruvate (ex-H(2)HPP). To prove that BacA acts regiospecifically on one of the two prochiral olefins in prephenate, we generated 1,5,8-[(13)C]-chorismate from bacterial fermentation of 5-[(13)C]-glucose and in turn produced 2,4,6-[(13)C]-prephenate via chorismate mutase. Tandem action of BacA and BacB gave 2,4,8-[(13)C]-7R-ex-H(2)HPP, showing that BacA isomerizes only the pro-R double bond in prephenate. Nonenzymatic isomerization of the BacA product into conjugation gives only the Δ(3)E-geometric isomer of Δ(3),Δ(5)-ex-H(2)HPP. On the other hand, acceleration of the allylic isomerization by BacB gives a mixture of the E- and Z-geometric isomers of the 7R-product, indicating some rerouting of the flux, likely through dienolate geometric isomers. << Less
Biochemistry 51:3241-3251(2012) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.