Reaction participants Show >> << Hide
- Name help_outline an acyl-CoA Identifier CHEBI:58342 Charge -4 Formula C22H31N7O17P3SR SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 2,045 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ergosterol Identifier CHEBI:16933 (Beilstein: 2338604; CAS: 57-87-4) help_outline Charge 0 Formula C28H44O InChIKeyhelp_outline DNVPQKQSNYMLRS-APGDWVJJSA-N SMILEShelp_outline [H][C@@]1(CC[C@@]2([H])C3=CC=C4C[C@@H](O)CC[C@]4(C)[C@@]3([H])CC[C@]12C)[C@H](C)\C=C\[C@H](C)C(C)C 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ergosteryl ester Identifier CHEBI:52320 Charge 0 Formula C29H43O2R SMILEShelp_outline [H][C@@]1(CC[C@@]2([H])C3=CC=C4C[C@H](CC[C@]4(C)[C@@]3([H])CC[C@]12C)OC([*])=O)[C@H](C)\C=C\[C@H](C)C(C)C 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33483 | RHEA:33484 | RHEA:33485 | RHEA:33486 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae.
Zweytick D., Leitner E., Kohlwein S.D., Yu C., Rothblatt J., Daum G.
In the yeast Saccharomyces cerevisiae, two acyl-CoA:sterol acyltransferases (ASATs) that catalyze the synthesis of steryl esters have been identified, namely Are2p (Sat1p) and Are1p (Sat2p). Deletion of either ARE1 or ARE2 has no effect on cell viability, and are1are2 double mutants grow in a simi ... >> More
In the yeast Saccharomyces cerevisiae, two acyl-CoA:sterol acyltransferases (ASATs) that catalyze the synthesis of steryl esters have been identified, namely Are2p (Sat1p) and Are1p (Sat2p). Deletion of either ARE1 or ARE2 has no effect on cell viability, and are1are2 double mutants grow in a similar manner to wild-type despite the complete lack of cellular ASAT activity and steryl ester formation [Yang, H., Bard, M., Bruner, D. A., Gleeson, A., Deckelbaum, R. J., Aljinovic, G., Pohl, T. M., Rothstein, R. & Sturley, S. L. (1996) Science 272, 1353-1356; Yu, C., Kennedy, J., Chang, C. C. Y. & Rothblatt, J. A. (1996) J. Biol. Chem. 271, 24157-24163]. Here we show that both Are2p and Are1p reside in the endoplasmic reticulum as demonstrated by measuring ASAT activity in subcellular fractions of are1 and are2 deletion strains. This localization was confirmed by fluorescence microscopy using hybrid proteins of Are2p and Are1p fused to green fluorescent protein (GFP). Lipid analysis of are1 and are2 deletion strains revealed that Are2p and Are1p utilize sterol substrates in vivo with different efficiency; Are2p has a significant preference for ergosterol as a substrate, whereas Are1p esterifies sterol precursors, mainly lanosterol, as well as ergosterol. The specificity towards fatty acids is similar for both isoenzymes. The lack of steryl esters in are1are2 mutant cells is largely compensated by an increased level of free sterols. Nevertheless, terbinafine, an inhibitor of ergosterol biosynthesis, inhibits growth of are1are2 cells more efficiently than growth of wild-type. In a growth competition experiment are1are2 cells grow more slowly than wild-type after several rounds of cultivation, suggesting that Are1p and Are2p or steryl esters, the product formed by these two enzymes, are more important in the natural environment than under laboratory conditions. << Less
Eur. J. Biochem. 267:1075-1082(2000) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.