Reaction participants Show >> << Hide
- Name help_outline zymosterone Identifier CHEBI:52386 (Beilstein: 3162033) help_outline Charge 0 Formula C27H42O InChIKeyhelp_outline AUNLIRXIJAVBNM-ZSBATXSLSA-N SMILEShelp_outline [H][C@@]12CCC3=C(CC[C@]4(C)[C@]([H])(CC[C@@]34[H])[C@H](C)CCC=C(C)C)[C@@]1(C)CCC(=O)C2 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,310 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,717 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline zymosterol Identifier CHEBI:18252 (Beilstein: 2568614; CAS: 128-33-6) help_outline Charge 0 Formula C27H44O InChIKeyhelp_outline CGSJXLIKVBJVRY-XTGBIJOFSA-N SMILEShelp_outline [H][C@@]12CCC3=C(CC[C@]4(C)[C@]([H])(CC[C@@]34[H])[C@H](C)CCC=C(C)C)[C@@]1(C)CC[C@H](O)C2 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,316 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33459 | RHEA:33460 | RHEA:33461 | RHEA:33462 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
A comprehensive machine-readable view of the mammalian cholesterol biosynthesis pathway.
Mazein A., Watterson S., Hsieh W.Y., Griffiths W.J., Ghazal P.
Cholesterol biosynthesis serves as a central metabolic hub for numerous biological processes in health and disease. A detailed, integrative single-view description of how the cholesterol pathway is structured and how it interacts with other pathway systems is lacking in the existing literature. He ... >> More
Cholesterol biosynthesis serves as a central metabolic hub for numerous biological processes in health and disease. A detailed, integrative single-view description of how the cholesterol pathway is structured and how it interacts with other pathway systems is lacking in the existing literature. Here we provide a systematic review of the existing literature and present a detailed pathway diagram that describes the cholesterol biosynthesis pathway (the mevalonate, the Kandutch-Russell and the Bloch pathway) and shunt pathway that leads to 24(S),25-epoxycholesterol synthesis. The diagram has been produced using the Systems Biology Graphical Notation (SBGN) and is available in the SBGN-ML format, a human readable and machine semantically parsable open community file format. << Less
Biochem. Pharmacol. 86:56-66(2013) [PubMed] [EuropePMC]
This publication is cited by 30 other entries.
-
Interactions of the ergosterol biosynthetic pathway with other lipid pathways.
Veen M., Lang C.
Micro-organisms have recently received broad attention as sources of novel lipids. An increased understanding of the effects of fats and oils and their composition on the metabolism and on health has shifted the focus towards the use of lipids for disease treatment and prevention and for the promo ... >> More
Micro-organisms have recently received broad attention as sources of novel lipids. An increased understanding of the effects of fats and oils and their composition on the metabolism and on health has shifted the focus towards the use of lipids for disease treatment and prevention and for the promotion of good health. A large range of lipidic products produced by yeast is known today. Ergosterol and its metabolic precursors are major lipidic components of industrial and commercial interest. Having in mind the aim to increase the productivity of ergosterol and its precursor metabolites, both the knowledge of regulatory mechanisms of the biosynthetic pathway and its interactions with other lipid pathways like those of sphingolipids, phospholipids and fatty acids are crucial. << Less
Biochem Soc Trans 33:1178-1181(2005) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.
-
Closing the gap: identification of human 3-ketosteroid reductase, the last unknown enzyme of mammalian cholesterol biosynthesis.
Marijanovic Z., Laubner D., Moeller G., Gege C., Husen B., Adamski J., Breitling R.
The protein encoded by the HSD17B7 gene was originally described as a prolactin receptor-associated protein and as 17beta-hydroxysteroid dehydrogenase (HSD) type 7. Its ability to synthesize 17beta-estradiol in vitro has been reported previously. However, we demonstrate that HSD17B7 is the ortholo ... >> More
The protein encoded by the HSD17B7 gene was originally described as a prolactin receptor-associated protein and as 17beta-hydroxysteroid dehydrogenase (HSD) type 7. Its ability to synthesize 17beta-estradiol in vitro has been reported previously. However, we demonstrate that HSD17B7 is the ortholog of the yeast 3-ketosteroid reductase Erg27p and converts zymosterone to zymosterol in vitro, using reduced nicotinamide adenine dinucleotide phosphate as cofactor. Expression of human and murine HSD17B7 in an Erg27p-deficient yeast strain complements the 3-ketosteroid reductase deficiency of the cells and restores growth on sterol-deficient medium. A fusion of HSD17B7 with green fluorescent protein is located in the endoplasmic reticulum, the site of postsqualene cholesterogenesis. Further critical evidence for a role of HSD17B7 in cholesterol metabolism is provided by the observation that its murine ortholog is a member of the same highly distinct embryonic synexpression group as hydroxymethyl-glutaryl-coenzyme A reductase, the rate-limiting enzyme of sterol biogenesis, and is specifically expressed in tissues that are involved in the pathogenesis of congenital cholesterol-deficiency disorders. We conclude that HSD17B7 participates in postsqualene cholesterol biosynthesis, thus completing the molecular cloning of all genes of this central metabolic pathway. In its function as the 3-ketosteroid reductase of cholesterol biosynthesis, HSD17B7 is a novel candidate for inborn errors of cholesterol metabolism. << Less
Mol. Endocrinol. 17:1715-1725(2003) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Multiple catalytic activities of human 17beta-hydroxysteroid dehydrogenase type 7 respond differently to inhibitors.
Ferrante T., Adinolfi S., D'Arrigo G., Poirier D., Daga M., Lolli M.L., Balliano G., Spyrakis F., Oliaro-Bosso S.
Cholesterol biosynthesis is a multistep process in mammals that includes the aerobic removal of three methyl groups from the intermediate lanosterol, one from position 14 and two from position 4. During the demethylations at position 4, a 3-ketosteroid reductase catalyses the conversion of both 4- ... >> More
Cholesterol biosynthesis is a multistep process in mammals that includes the aerobic removal of three methyl groups from the intermediate lanosterol, one from position 14 and two from position 4. During the demethylations at position 4, a 3-ketosteroid reductase catalyses the conversion of both 4-methylzymosterone and zymosterone to 4-methylzymosterol and zymosterol, respectively, restoring the alcoholic function of lanosterol, which is also maintained in cholesterol. Unlike other eukaryotes, mammals also use the same enzyme as an estrone reductase that can transform estrone (E1) into estradiol (E2). This enzyme, named 17β-hydroxysteroid dehydrogenase type 7 (HSD17B7), is therefore a multifunctional protein in mammals, and one that belongs to both the HSD17B family, which is involved in steroid-hormone metabolism, and to the family of post-squalene cholesterol biosynthesis enzymes. In the present study, a series of known inhibitors of human HSD17B7's E1-reductase activity have been assayed for potential inhibition against 3-ketosteroid reductase activity. Surprisingly, the assayed compounds lost their inhibition activity when tested in HepG2 cells that were incubated with radiolabelled acetate and against the recombinant overexpressed human enzyme incubated with 4-methylzymosterone (both radiolabelled and not). Preliminary kinetic analyses suggest a mixed or non-competitive inhibition on the E1-reductase activity, which is in agreement with Molecular Dynamics simulations. These results raise questions about the mechanism(s) of action of these possible inhibitors, the enzyme dynamic regulation and the interplay between the two activities. << Less
Biochimie 170:106-117(2020) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.