Enzymes
UniProtKB help_outline | 5 proteins |
Reaction participants Show >> << Hide
- Name help_outline fecosterol Identifier CHEBI:17038 (Beilstein: 3220148; CAS: 516-86-9) help_outline Charge 0 Formula C28H46O InChIKeyhelp_outline SLQKYSPHBZMASJ-QKPORZECSA-N SMILEShelp_outline [H][C@@]12CCC3=C(CC[C@]4(C)[C@]([H])(CC[C@@]34[H])[C@H](C)CCC(=C)C(C)C)[C@@]1(C)CC[C@H](O)C2 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline episterol Identifier CHEBI:23929 (Beilstein: 2421473; CAS: 474-68-0) help_outline Charge 0 Formula C28H46O InChIKeyhelp_outline BTCAEOLDEYPGGE-JVAZTMFWSA-N SMILEShelp_outline [H][C@@]12CC=C3[C@]4([H])CC[C@]([H])([C@H](C)CCC(=C)C(C)C)[C@@]4(C)CC[C@]3([H])[C@@]1(C)CC[C@H](O)C2 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33435 | RHEA:33436 | RHEA:33437 | RHEA:33438 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Yeast sterol C8-C7 isomerase: identification and characterization of a high-affinity binding site for enzyme inhibitors.
Moebius F.F., Bermoser K., Reiter R.J., Hanner M., Glossmann H.
The yeast gene ERG2 encodes a sterol C8-C7 isomerase and is essential for ergosterol synthesis and cell proliferation. Its striking homology with the so-called sigma1 receptor of guinea pig brain, a polyvalent steroid and drug binding protein, suggested that the yeast sterol C8-C7 isomerase (ERG2) ... >> More
The yeast gene ERG2 encodes a sterol C8-C7 isomerase and is essential for ergosterol synthesis and cell proliferation. Its striking homology with the so-called sigma1 receptor of guinea pig brain, a polyvalent steroid and drug binding protein, suggested that the yeast sterol C8-C7 isomerase (ERG2) carries a similar high affinity drug binding domain. Indeed the sigma ligands [3H]haloperidol (Kd = 0.3 nM) and [3H]ifenprodil (Kd = 1.4 nM) bound to a single population of sites in ERG2 wild type yeast microsomes (Bmax values of 77 and 61 pmol/mg of protein, respectively), whereas binding activity was absent in strains carrying ERG2 gene mutations or disruptions. [3H]Ifenprodil binding was inhibited by sterol isomerase inhibitors such as fenpropimorph (Ki = 0.05 nM), tridemorph (Ki = 0.09 nM), MDL28,815 (Ki = 0.44 nM), triparanol (Ki = 1.5 nM), and AY-9944 (Ki = 5.8 nM). [3H]Haloperidol specifically photoaffinity-labeled a protein with an apparent molecular weight of 27400, in agreement with the molecular mass of the sterol C8-C7 isomerase (24900 Da). 9E10 c-myc antibodies specifically immunoprecipitated the c-myc tagged protein after [3H]haloperidol photolabeling, unequivocally proving that the drug binding site is localized on the ERG2 gene product. Haloperidol, trifluperidol, and ifenprodil inhibited the growth of Saccharomyces cerevisiae and reduced the ergosterol content of cells grown in their presence. Our results demonstrate that the yeast sterol C8-C7 isomerase has a polyvalent high-affinity drug binding site similar to mammalian sigma receptors and that in yeast sigma ligands inhibit sterol biosynthesis. << Less
-
Cloning and disruption of the yeast C-8 sterol isomerase gene.
Ashman W.H., Barbuch R.J., Ulbright C.E., Jarrett H.W., Bard M.
The yeast ERG2 gene codes for the C-8 sterol isomerase, an enzyme required for the isomerization of the delta 8 double bond to the delta 7 position in ergosterol biosynthesis. The ERG2 gene was cloned by complementation of a C-8 sterol isomerase mutant strain (erg2). The complementing region of DN ... >> More
The yeast ERG2 gene codes for the C-8 sterol isomerase, an enzyme required for the isomerization of the delta 8 double bond to the delta 7 position in ergosterol biosynthesis. The ERG2 gene was cloned by complementation of a C-8 sterol isomerase mutant strain (erg2). The complementing region of DNA required to restore ergosterol synthesis to erg2 was limited to a 1.0 kb StuI-BglII fragment. In order to determine whether the ERG2 gene was essential for yeast viability, a LEU2 gene was inserted into the NdeI site (made blunt) of this 1.0 kb fragment. Transformation of a wild type diploid strain with the ERG2 substituted DNA resulted in the generation of viable haploids containing the erg2 null allele (erg2-4::Leu2). These results suggest that the C-8 sterol isomerase activity is not essential for yeast cell viability. This disruption represents the second ergosterol biosynthetic gene in the distal portion of the pathway to be disrupted without adversely affecting cell viability. << Less
Comments
Reaction catalysed by C-8 sterol isomerase (ERG2)