Enzymes
UniProtKB help_outline | 959 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (2Z,4E)-2-hydroxyhexa-2,4-dienedioate Identifier CHEBI:28080 (Beilstein: 4310322) help_outline Charge -2 Formula C6H4O5 InChIKeyhelp_outline JBEBGTMCZIGUTK-TZFCGSKZSA-L SMILEShelp_outline O\C(=C/C=C/C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (3E)-2-oxohex-3-enedioate Identifier CHEBI:64908 Charge -2 Formula C6H4O5 InChIKeyhelp_outline QTHJXLFFFTVYJC-OWOJBTEDSA-L SMILEShelp_outline [O-]C(=O)C\C=C\C(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33431 | RHEA:33432 | RHEA:33433 | RHEA:33434 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Publications
-
Kinetic, stereochemical, and structural effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase.
Harris T.K., Czerwinski R.M., Johnson W.H. Jr., Legler P.M., Abeygunawardana C., Massiah M.A., Stivers J.T., Whitman C.P., Mildvan A.S.
Three arginine residues (Arg-11, Arg-39, Arg-61) are found at the active site of 4-oxalocrotonate tautomerase in the X-ray structure of the affinity-labeled enzyme [Taylor, A. B., Czerwinski, R. M., Johnson, R. M., Jr., Whitman, C. P., and Hackert, M. L. (1998) Biochemistry 37, 14692-14700]. The c ... >> More
Three arginine residues (Arg-11, Arg-39, Arg-61) are found at the active site of 4-oxalocrotonate tautomerase in the X-ray structure of the affinity-labeled enzyme [Taylor, A. B., Czerwinski, R. M., Johnson, R. M., Jr., Whitman, C. P., and Hackert, M. L. (1998) Biochemistry 37, 14692-14700]. The catalytic roles of these arginines were examined by mutagenesis, kinetic, and heteronuclear NMR studies. With a 1,6-dicarboxylate substrate (2-hydroxymuconate), the R61A mutation showed no kinetic effects, while the R11A mutation decreased k(cat) 88-fold and increased K(m) 8.6-fold, suggesting both binding and catalytic roles for Arg-11. With a 1-monocarboxylate substrate (2-hydroxy-2,4-pentadienoate), no kinetic effects of the R11A mutation were found, indicating that Arg-11 interacts with the 6-carboxylate of the substrate. The stereoselectivity of the R11A-catalyzed protonation at C-5 of the dicarboxylate substrate decreased, while the stereoselectivity of protonation at C-3 of the monocarboxylate substrate increased in comparison with wild-type 4-OT, indicating the importance of Arg-11 in properly orienting the dicarboxylate substrate by interacting with the charged 6-carboxylate group. With 2-hydroxymuconate, the R39A and R39Q mutations decreased k(cat) by 125- and 389-fold and increased K(m) by 1.5- and 2.6-fold, respectively, suggesting a largely catalytic role for Arg-39. The activity of the R11A/R39A double mutant was at least 10(4)-fold lower than that of the wild-type enzyme, indicating approximate additivity of the effects of the two arginine mutants on k(cat). For both R11A and R39Q, 2D (1)H-(15)N HSQC and 3D (1)H-(15)N NOESY-HSQC spectra showed chemical shift changes mainly near the mutated residues, indicating otherwise intact protein structures. The changes in the R39Q mutant were mainly in the beta-hairpin from residues 50 to 57 which covers the active site. HSQC titration of R11A with the substrate analogue cis, cis-muconate yielded a K(d) of 22 mM, 37-fold greater than the K(d) found with wild-type 4-OT (0.6 mM). With the R39Q mutant, cis, cis-muconate showed negative cooperativity in active site binding with two K(d) values, 3.5 and 29 mM. This observation together with the low K(m) of 2-hydroxymuconate (0.47 mM) suggests that only the tight binding sites function catalytically in the R39Q mutant. The (15)Nepsilon resonances of all six Arg residues of 4-OT were assigned, and the assignments of Arg-11, -39, and -61 were confirmed by mutagenesis. The binding of cis,cis-muconate to wild-type 4-OT upshifts Arg-11 Nepsilon (by 0.05 ppm) and downshifts Arg-39 Nepsilon (by 1.19 ppm), indicating differing electronic delocalizations in the guanidinium groups. A mechanism is proposed in which Arg-11 interacts with the 6-carboxylate of the substrate to facilitate both substrate binding and catalysis and Arg-39 interacts with the 1-carboxylate and the 2-keto group of the substrate to promote carbonyl polarization and catalysis, while Pro-1 transfers protons from C-3 to C-5. This mechanism, together with the effects of mutations of catalytic residues on k(cat), provides a quantitative explanation of the 10(7)-fold catalytic power of 4-OT. Despite its presence in the active site in the crystal structure of the affinity-labeled enzyme, Arg-61 does not play a significant role in either substrate binding or catalysis. << Less
-
Enzymatic ketonization of 2-hydroxymuconate: specificity and mechanism investigated by the crystal structures of two isomerases.
Subramanya H.S., Roper D.I., Dauter Z., Dodson E.J., Davies G.J., Wilson K.S., Wigley D.B.
5-Carboxymethyl-2-hydroxymuconate isomerase (CHMI) and 4-oxalocrotonate tautomerase (4-OT) are enzymes that catalyze the isomerization of unsaturated ketones. They share a common enzyme mechanism, although they show a preference for different substrates. There is no apparent sequence homology betw ... >> More
5-Carboxymethyl-2-hydroxymuconate isomerase (CHMI) and 4-oxalocrotonate tautomerase (4-OT) are enzymes that catalyze the isomerization of unsaturated ketones. They share a common enzyme mechanism, although they show a preference for different substrates. There is no apparent sequence homology between the enzymes. To investigate the molecular mechanism and the basis for their substrate specificity, we have determined the crystal structures of the two enzymes at high resolution. 4-OT is hexameric, with the subunits arranged with 32 symmetry. CHMI is trimeric and has extensive contacts between subunits, which include secondary structural elements. The central core of the CHMI monomer has a fold similar to a 4-OT dimer, but the secondary structural elements that form the subunit contacts around the 3-fold axis are different in the two enzymes. The region of greatest similarity between the two enzymes is a large pocket that is proposed to be the active site. The enzymes appear to operate via a "one-base" mechanism, and the possible role of residues in this pocket is discussed in view of this idea. Finally, the molecular basis for substrate specificity in the two enzymes is discussed. << Less
-
Catalytic role of the amino-terminal proline in 4-oxalocrotonate tautomerase: affinity labeling and heteronuclear NMR studies.
Stivers J.T., Abeygunawardana C., Mildvan A.S., Hajipour G., Whitman C.P., Chen L.H.
4-Oxalocrotonate tautomerase (EC 5.3.2-; 4-OT), a hexamer consisting of 62 residues per subunit, catalyzes the isomerization of unsaturated alpha-keto acids, converting unconjugated ketones to the conjugated isomers via a dienolic intermediate. The recently solved crystal structure of an isozyme o ... >> More
4-Oxalocrotonate tautomerase (EC 5.3.2-; 4-OT), a hexamer consisting of 62 residues per subunit, catalyzes the isomerization of unsaturated alpha-keto acids, converting unconjugated ketones to the conjugated isomers via a dienolic intermediate. The recently solved crystal structure of an isozyme of 4-OT suggests that the amino-terminal proline is the catalytic base [Subramanya, H. S., Roper, D. I., Dauter, Z., Dodson, E. J., Davies, G. J., Wilson, K. S., & Wigley, D. B. (1996) Biochemistry 35, 792-802]. In support of this proposed role, we have found that the active-site-directed irreversible inhibitor 3-bromopyruvate (3-BP) blocks the amino terminus of 4-OT to Edman degradation and results in the disappearance of the 15N resonance of Pro-1 (delta = 49.2 ppm at pH 6.40 and 42 degrees C) in the 15N NMR spectrum of uniformly 15N-labeled 4-OT. Furthermore, covalent bonding between a 15N resonance of 4-OT and the methylene carbon of the reduced, 3-(13)C-labeled lactyl adduct derived from [3-(13)C]-bromopyruvate was then directly demonstrated using two heteronuclear NMR methods, an 1H-(13)C HSQC experiment and a novel inverse correlation experiment which we call H(C)N. The chemical shift of the modified 15N resonance (delta = 86.5 ppm) is consistent with that of an alkylated and cationic, amino-terminal proline. Affinity labeling with 2-(14)C-labeled bromopyruvate indicates that the ultimate stoichiometry of modification is I equiv of 3-BP per 4-OT monomer. However, an analysis of the residual enzyme activity after differing extents of fractional modification with 3-BP indicates that modification of three active sites per hexamer abolishes essentially all activity of the hexamer. Thus, 4-OT exhibits half-of-the-sites stoichiometry with 3-BP. Finally, the pH dependence of kinact/KI for affinity labeling by 3-BP yields a pKa value of 6.7 +/-0.3, in reasonable agreement with the pKa values found for kcat/KM for the non-sticky substrate 2-hydroxy-2,4-pentadienoate and by direct NMR titration of Pro-1 [Stivers, J. T., Abeygunawardana, C., Mildvan, A. S., Hajipour, G., & Whitman, C. P. (1996) Biochemistry 35, 814-823]. These results strongly implicate the amino-terminal proline as the general-base catalyst on 4-OT. << Less
-
Kinetic and stereochemical analysis of YwhB, a 4-oxalocrotonate tautomerase homologue in Bacillus subtilis: mechanistic implications for the YwhB- and 4-oxalocrotonate tautomerase-catalyzed reactions.
Wang S.C., Johnson W.H. Jr., Czerwinski R.M., Stamps S.L., Whitman C.P.
YwhB, a 4-oxalocrotonate tautomerase (4-OT) homologue in Bacillus subtilis, has no known biological role, and the gene has no apparent genomic context. The kinetic and stereochemical properties of YwhB have been examined using available enol and dienol compounds. The kinetic analysis shows that Yw ... >> More
YwhB, a 4-oxalocrotonate tautomerase (4-OT) homologue in Bacillus subtilis, has no known biological role, and the gene has no apparent genomic context. The kinetic and stereochemical properties of YwhB have been examined using available enol and dienol compounds. The kinetic analysis shows that YwhB has a relatively nonspecific 1,3- and 1,5-keto-enol tautomerase activity, with the former activity prevailing. Replacement of Pro-1 or Arg-11 with an alanine significantly reduces or abolishes these activities, implicating both residues as critical ones for the activities. In D2O, ketonization of two monoacid substrates (2-hydroxy-2,4-pentadienoate and phenylenolpyruvate) produces a mixture of stereoisomers {2-keto-3-[2H]-4-pentenoate and 3-[2H]-phenylpyruvate}, where the (3R)-isomers predominate. Ketonization of 2-hydroxy-2,4-hexadienedioate, a diacid, in D2O affords mostly the opposite enantiomer, (3S)-2-oxo-[3-2H]-4-hexenedioate. The mono- and diacids apparently bind in different orientations in the active site of YwhB, but the highly stereoselective nature of the YwhB reaction using a diacid suggests that the biological substrate for YwhB may be a diacid. Moreover, of the three dienols examined, 1,3- and 1,5-keto-enol tautomerization reactions are only observed for 2-hydroxy-2,4-hexadienedioate, indicating that the C-3 and C-5 positions are accessible for protonation in this compound. Incubation of 4-OT with 2-hydroxy-2,4-hexadienedioate in D2O results in a racemic mixture of 2-oxo-[3-2H]-4-hexenedioate, suggesting that 4-OT may not catalyze a 1,3-keto-enol tautomerization reaction using this dienol. It has previously been shown that 4-OT catalyzes the near stereospecific conversion of 2-hydroxy-2,4-hexadienedioate to (5S)-[5-2H]-2-oxo-3-hexenedioate in D2O. Taken together, these observations suggest that 4-OT might function as a 1,5-keto-enol tautomerase using 2-hydroxy-2,4-hexadienedioate. << Less
Biochemistry 46:11919-11929(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Uncovering the protocatechuate 2,3-cleavage pathway genes.
Kasai D., Fujinami T., Abe T., Mase K., Katayama Y., Fukuda M., Masai E.
Paenibacillus sp. (formerly Bacillus macerans) strain JJ-1b is able to grow on 4-hydroxybenzoate (4HB) as a sole source of carbon and energy and is known to degrade 4HB via the protocatechuate (PCA) 2,3-cleavage pathway. However, none of the genes involved in this pathway have been identified. In ... >> More
Paenibacillus sp. (formerly Bacillus macerans) strain JJ-1b is able to grow on 4-hydroxybenzoate (4HB) as a sole source of carbon and energy and is known to degrade 4HB via the protocatechuate (PCA) 2,3-cleavage pathway. However, none of the genes involved in this pathway have been identified. In this study, we identified and characterized the JJ-1b genes for the 4HB catabolic pathway via the PCA 2,3-cleavage pathway, which consisted of praR and praABEGFDCHI. Based on the enzyme activities of cell extracts of Escherichia coli carrying praI, praA, praH, praB, praC, and praD, these genes were found to code for 4HB 3-hydroxylase, PCA 2,3-dioxygenase, 5-carboxy-2-hydroxymuconate-6-semialdehyde decarboxylase, 2-hydroxymuconate-6-semialdehyde dehydrogenase, 4-oxalocrotonate (OCA) tautomerase, and OCA decarboxylase, respectively, which are involved in the conversion of 4HB into 2-hydroxypenta-2,4-dienoate (HPD). The praE, praF, and praG gene products exhibited 45 to 61% amino acid sequence identity to the corresponding enzymes responsible for the catabolism of HPD to pyruvate and acetyl coenzyme A. The deduced amino acid sequence of praR showed similarity with those of IclR-type transcriptional regulators. Reverse transcription-PCR analysis revealed that praABEGFDCHI constitute an operon, and these genes were expressed during the growth of JJ-1b on 4HB and PCA. praR-praABEGFDCHI conferred the ability to grow on 4HB to E. coli, suggesting that praEGF were functional for the conversion of HPD to pyruvate and acetyl coenzyme A. A promoter analysis suggested that praR encodes a repressor of the pra operon. << Less
J. Bacteriol. 191:6758-6768(2009) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Catalytic mechanism of 4-oxalocrotonate tautomerase: significances of protein-protein interactions on proton transfer pathways.
Wu P., Cisneros G.A., Hu H., Chaudret R., Hu X., Yang W.
4-Oxalocrotonate tautomerase (4-OT), a member of tautomerase superfamily, is an essential enzyme in the degradative metabolism pathway occurring in the Krebs cycle. The proton transfer process catalyzed by 4-OT has been explored previously using both experimental and theoretical methods; however, ... >> More
4-Oxalocrotonate tautomerase (4-OT), a member of tautomerase superfamily, is an essential enzyme in the degradative metabolism pathway occurring in the Krebs cycle. The proton transfer process catalyzed by 4-OT has been explored previously using both experimental and theoretical methods; however, the elaborate catalytic mechanism of 4-OT still remains unsettled. By combining classical molecular mechanics with quantum mechanics, our results demonstrate that the native hexametric 4-OT enzyme, including six protein monomers, must be employed to simulate the proton transfer process in 4-OT due to protein-protein steric and electrostatic interactions. As a consequence, only three out of the six active sites in the 4-OT hexamer are observed to be occupied by three 2-oxo-4-hexenedioates (2o4hex), i.e., half-of-the-sites occupation. This agrees with experimental observations on negative cooperative effect between two adjacent substrates. Two sequential proton transfers occur: one proton from the C3 position of 2o4hex is initially transferred to the nitrogen atom of the general base, Pro1. Subsequently, the same proton is shuttled back to the position C5 of 2o4hex to complete the proton transfer process in 4-OT. During the catalytic reaction, conformational changes (i.e., 1-carboxyl group rotation) of 2o4hex may occur in the 4-OT dimer model but cannot proceed in the hexametric structure. We further explained that the docking process of 2o4hex can influence the specific reactant conformations and an alternative substrate (2-hydroxymuconate) may serve as reactant under a different reaction mechanism than 2o4hex. << Less
-
4-oxalocrotonate tautomerase, an enzyme composed of 62 amino acid residues per monomer.
Chen L.H., Kenyon G.L., Curtin F., Harayama S., Bembenek M.E., Hajipour G., Whitman C.P.
The xylH gene encoding 4-oxalocrotonate tautomerase (4-OT) has been located on a subclone of the Pseudomonas putida mt-2 TOL plasmid pWW0 and inserted into an Escherichia coli expression vector. Several of the genes of the metafission pathway encoded by pWW0 have been cloned in E. coli, but the ov ... >> More
The xylH gene encoding 4-oxalocrotonate tautomerase (4-OT) has been located on a subclone of the Pseudomonas putida mt-2 TOL plasmid pWW0 and inserted into an Escherichia coli expression vector. Several of the genes of the metafission pathway encoded by pWW0 have been cloned in E. coli, but the overexpression of their gene products has met with limited success. By utilizing the E. coli alkaline phosphatase promoter (phoA) coupled with the proper positioning of a ribosome-binding region, we are able to express functional 4-OT in yields of at least 10 mg of pure enzyme/liter of culture. 4-OT has been previously characterized and shown to be an extremely efficient catalyst (Whitman, C. P., Aird, B. A., Gillespie, W. R., and Stolowich, N. J. (1991) J. Am. Chem. Soc. 113, 3154-3162). Kinetic and physical characterization of the E. coli-expressed protein show that it is identical with that of the 4-OT isolated from P. putida. The functional unit is apparently a pentamer of identical subunits, each consisting of only 62 amino acid residues. This is the smallest enzyme subunit reported to date. The amino acid sequence, determined in part from automated Edman degradation and also deduced from the primary sequence of xylH, did not show homology with any of the sequences in the current data bases nor with any of the sequences of enzymes that catalyze similar reactions. We propose that the active site of 4-OT may be established by an overlap of subunits and comprised of amino acid residues belonging to several, if not all, of the subunits. << Less
J. Biol. Chem. 267:17716-17721(1992) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.