Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (2R)-2-O-(α-D-mannosyl)-glycerate Identifier CHEBI:57541 (Beilstein: 3686745) help_outline Charge -1 Formula C9H15O9 InChIKeyhelp_outline DDXCFDOPXBPUJC-SAYMMRJXSA-M SMILEShelp_outline OC[C@H]1O[C@H](O[C@H](CO)C([O-])=O)[C@@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Nπ-phospho-L-histidyl-[protein]
Identifier
RHEA-COMP:9746
Reactive part
help_outline
- Name help_outline Nπ-phospho-L-histidine residue Identifier CHEBI:64837 Charge -2 Formula C6H6N3O4P SMILEShelp_outline C(*)(=O)[C@@H](N*)CC=1N(C=NC1)P([O-])(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2R)-2-O-(6-phospho-α-D-mannosyl)-glycerate Identifier CHEBI:60331 Charge -3 Formula C9H14O12P InChIKeyhelp_outline BOLXAGHGKNGVBE-MTXRGOKVSA-K SMILEShelp_outline OC[C@@H](O[C@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H](O)[C@@H]1O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-histidyl-[protein]
Identifier
RHEA-COMP:9745
Reactive part
help_outline
- Name help_outline L-histidine residue Identifier CHEBI:29979 Charge 0 Formula C6H7N3O SMILEShelp_outline C(*)(=O)[C@@H](N*)CC=1N=CNC1 2D coordinates Mol file for the small molecule Search links Involved in 40 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33307 | RHEA:33308 | RHEA:33309 | RHEA:33310 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Phosphotransferase-mediated transport of the osmolyte 2-O-alpha-mannosyl-D-glycerate in Escherichia coli occurs by the product of the mngA (hrsA) gene and is regulated by the mngR (farR) gene product acting as repressor.
Sampaio M.-M., Chevance F., Dippel R., Eppler T., Schlegel A., Boos W., Lu Y.-J., Rock C.O.
2-O-alpha-mannosyl-D-glycerate (MGs) has been recognized as an osmolyte in hyperthermophilic but not mesophilic prokaryotes. We report that MG is taken up and utilized as sole carbon source by Escherichia coli K12, strainMC4100. Uptake is mediated by the P-enolpyruvate-dependent phosphotransferase ... >> More
2-O-alpha-mannosyl-D-glycerate (MGs) has been recognized as an osmolyte in hyperthermophilic but not mesophilic prokaryotes. We report that MG is taken up and utilized as sole carbon source by Escherichia coli K12, strainMC4100. Uptake is mediated by the P-enolpyruvate-dependent phosphotransferase system with the MG-inducible HrsA (now called MngA) protein as its specific EIIABC complex. The apparent Km of MG uptake in induced cells was 10 microm, and the Vmax was 0.65 nmol/min/10(9) cells. Inverted membrane vesicles harboring plasmid-encoded MngA phosphorylated MG in a P-enolpyruvate-dependent manner. A deletion mutant in mngA was devoid of MG transport but is complemented by a plasmid harboring mngA. Uptake of MG in MC4100 also caused induction of a regulon specifying the uptake and the metabolism of galactarate and glucarate controlled by the CdaR activator. The ybgG gene (now called mngB) the gene immediately downstream of mngA encodes a protein with alpha-mannosidase activity. farR, the gene upstream of mngA (now called mngR) had previously been characterized as a fatty acyl-responsive regulator; however, deletion of mngR resulted in the up-regulation of only two genes, mngA and mngB. The mngR deletion caused constitutive MG transport that became MG-inducible after transformation with plasmid expressed mngR. Thus, MngR is the regulator (repressor) of the MG transport/metabolism system. Thus, the mngR mngA mngB gene cluster encodes an MG utilizing system. << Less
J. Biol. Chem. 279:5537-5548(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.