Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (2E,6E)-farnesyl diphosphate Identifier CHEBI:175763 Charge -3 Formula C15H25O7P2 InChIKeyhelp_outline VWFJDQUYCIWHTN-YFVJMOTDSA-K SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 175 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (+)-sativene Identifier CHEBI:64800 Charge 0 Formula C15H24 InChIKeyhelp_outline VOBBUADSYROGAT-FQKPHLNHSA-N SMILEShelp_outline [H][C@@]12CC[C@@]3([H])[C@]1([H])[C@H](CC[C@@]3(C)C2=C)C(C)C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33119 | RHEA:33120 | RHEA:33121 | RHEA:33122 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers.
Lopez-Gallego F., Agger S.A., Abate-Pella D., Distefano M.D., Schmidt-Dannert C.
Sesquiterpene synthases catalyze with different catalytic fidelity the cyclization of farnesyl pyrophosphate (FPP) into hundreds of known compounds with diverse structures and stereochemistries. Two sesquiterpene synthases, Cop4 and Cop6, were previously isolated from Coprinus cinereus as part of ... >> More
Sesquiterpene synthases catalyze with different catalytic fidelity the cyclization of farnesyl pyrophosphate (FPP) into hundreds of known compounds with diverse structures and stereochemistries. Two sesquiterpene synthases, Cop4 and Cop6, were previously isolated from Coprinus cinereus as part of a fungal genome survey. This study investigates the reaction mechanism and catalytic fidelity of the two enzymes. Cyclization of all-trans-FPP ((E,E)-FPP) was compared to the cyclization of the cis-trans isomer of FPP ((Z,E)-FPP) as a surrogate for the secondary cisoid neryl cation intermediate generated by sesquiterpene synthases, which are capable of isomerizing the C2--C3 pi bond of all-trans-FPP. Cop6 is a "high-fidelity" alpha-cuprenene synthase that retains its fidelity under various conditions tested. Cop4 is a catalytically promiscuous enzyme that cyclizes (E,E)-FPP into multiple products, including (-)-germacrene D and cubebol. Changing the pH of the reaction drastically alters the fidelity of Cop4 and makes it a highly selective enzyme. Cyclization of (Z,E)-FPP by Cop4 and Cop6 yields products that are very different from those obtained with (E,E)-FPP. Conversion of (E,E)-FPP proceeds via a (6R)-beta-bisabolyl carbocation in the case of Cop6 and an (E,E)-germacradienyl carbocation in the case of Cop4. However, (Z,E)-FPP is cyclized via a (6S)-beta-bisabolene carbocation by both enzymes. Structural modeling suggests that differences in the active site and the loop that covers the active site of the two enzymes might explain their different catalytic fidelities. << Less
ChemBioChem 11:1093-1106(2010) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus.
Agger S., Lopez-Gallego F., Schmidt-Dannert C.
Fungi are a rich source of bioactive secondary metabolites, and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared with the large number of sesquiterpene synthases identified in pl ... >> More
Fungi are a rich source of bioactive secondary metabolites, and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared with the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene-oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as an alpha-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes delta-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homologue but instead was found to catalyse the highly specific synthesis of alpha-cuprenene. Coexpression of cop6 and the two monooxygenase genes next to it yields oxygenated alpha-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. << Less
Mol. Microbiol. 72:1181-1195(2009) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Selectivity of fungal sesquiterpene synthases: role of the active site's H-1 alpha loop in catalysis.
Lopez-Gallego F., Wawrzyn G.T., Schmidt-Dannert C.
Sesquiterpene synthases are responsible for the cyclization of farnesyl pyrophosphate into a myriad of structurally diverse compounds with various biological activities. We examine here the role of the conserved active site H-α1 loop in catalysis in three previously characterized fungal sesquiterp ... >> More
Sesquiterpene synthases are responsible for the cyclization of farnesyl pyrophosphate into a myriad of structurally diverse compounds with various biological activities. We examine here the role of the conserved active site H-α1 loop in catalysis in three previously characterized fungal sesquiterpene synthases. The H-α1 loops of Cop3, Cop4, and Cop6 from Coprinus cinereus were altered by site-directed mutagenesis and the resultant product profiles were analyzed by gas chromatography-mass spectrometry and compared to the wild-type enzymes. In addition, we examine the effect of swapping the H-α1 loop from the promiscuous enzyme Cop4 with the more selective Cop6 and the effect of acidic or basic conditions on loop mutations in Cop4. Directed mutations of the H-α1 loop had a marked effect on the product profile of Cop3 and Cop4, while little to no change was shown in Cop6. Swapping of the Cop4 and Cop6 loops with one another was again shown to influence the product profile of Cop4, while the product profile of Cop6 remained identical to the wild-type enzyme. The loop mutations in Cop4 also implicate specific residues responsible for the pH sensitivity of the enzyme. These results affirm the role of the H-α1 loop in catalysis and provide a potential target to increase the product diversity of terpene synthases. << Less
Appl. Environ. Microbiol. 76:7723-7733(2010) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.