Enzymes
UniProtKB help_outline | 3 proteins |
Reaction participants Show >> << Hide
- Name help_outline (4R)-hydroxysphinganine 1-phosphate Identifier CHEBI:64795 Charge -1 Formula C18H39NO6P InChIKeyhelp_outline AYGOSKULTISFCW-KSZLIROESA-M SMILEShelp_outline CCCCCCCCCCCCCC[C@@H](O)[C@@H](O)[C@@H]([NH3+])COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (4R)-hydroxysphinganine Identifier CHEBI:64124 Charge 1 Formula C18H40NO3 InChIKeyhelp_outline AERBNCYCJBRYDG-KSZLIROESA-O SMILEShelp_outline CCCCCCCCCCCCCC[C@@H](O)[C@@H](O)[C@@H]([NH3+])CO 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33067 | RHEA:33068 | RHEA:33069 | RHEA:33070 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Biosynthesis of the anti-lipid-microdomain sphingoid base 4,14-sphingadiene by the ceramide desaturase FADS3.
Jojima K., Edagawa M., Sawai M., Ohno Y., Kihara A.
Sphingolipids are multifunctional lipids. Among the sphingolipid-component sphingoid bases, 4,14-sphingadiene (SPD) is unique such that it has a cis double bond with a bent structure. Although SPD was discovered half a century ago, its tissue distribution, biosynthesis, and degradation remain poor ... >> More
Sphingolipids are multifunctional lipids. Among the sphingolipid-component sphingoid bases, 4,14-sphingadiene (SPD) is unique such that it has a cis double bond with a bent structure. Although SPD was discovered half a century ago, its tissue distribution, biosynthesis, and degradation remain poorly understood. Here, we established a specific and quantitative method for SPD measurement and found that SPD exists in a wide range of mammalian tissues. SPD was especially abundant in kidney, where the amount of SPD was ~2/3 of sphingosine, the most abundant sphingoid base in mammals. Although SPD is metabolized to ceramides and SPD 1-phosphate with almost the same efficiency as sphingosine, it is less susceptible to degradation by a cleavage reaction, at least in vitro. We identified the fatty acid desaturase family protein FADS3 as a ceramide desaturase that produces SPD ceramides by desaturating ceramides containing sphingosine. SPD sphingolipids were preferentially localized outside lipid microdomains, suggesting that SPD has different functions compared to other sphingoid bases in the formation of lipid microdomains. In summary, we revealed the biosynthesis and degradation pathways of SPD and its characteristic membrane localization. Our findings contribute to the elucidation of the molecular mechanism underlying the generation of sphingolipid diversity. << Less
FASEB J. 34:3318-3335(2020) [PubMed] [EuropePMC]
This publication is cited by 24 other entries.
-
Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids.
Kondo N., Ohno Y., Yamagata M., Obara T., Seki N., Kitamura T., Naganuma T., Kihara A.
The long-chain base phytosphingosine is a component of sphingolipids and exists in yeast, plants and some mammalian tissues. Phytosphingosine is unique in that it possesses an additional hydroxyl group compared with other long-chain bases. However, its metabolism is unknown. Here we show that phyt ... >> More
The long-chain base phytosphingosine is a component of sphingolipids and exists in yeast, plants and some mammalian tissues. Phytosphingosine is unique in that it possesses an additional hydroxyl group compared with other long-chain bases. However, its metabolism is unknown. Here we show that phytosphingosine is metabolized to odd-numbered fatty acids and is incorporated into glycerophospholipids both in yeast and mammalian cells. Disruption of the yeast gene encoding long-chain base 1-phosphate lyase, which catalyzes the committed step in the metabolism of phytosphingosine to glycerophospholipids, causes an ~40% reduction in the level of phosphatidylcholines that contain a C15 fatty acid. We also find that 2-hydroxypalmitic acid is an intermediate of the phytosphingosine metabolic pathway. Furthermore, we show that the yeast MPO1 gene, whose product belongs to a large, conserved protein family of unknown function, is involved in phytosphingosine metabolism. Our findings provide insights into fatty acid diversity and identify a pathway by which hydroxyl group-containing lipids are metabolized. << Less
Nat. Commun. 5:5338-5338(2014) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.