Reaction participants Show >> << Hide
-
Namehelp_outline
reduced [2Fe-2S]-[putidaredoxin]
Identifier
RHEA-COMP:14158
Reactive part
help_outline
- Name help_outline [2Fe-2S]1+ Identifier CHEBI:33738 Charge 1 Formula Fe2S2 InChIKeyhelp_outline MAGIRAZQQVQNKP-UHFFFAOYSA-N SMILEShelp_outline S1[Fe]S[Fe+]1 2D coordinates Mol file for the small molecule Search links Involved in 238 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [2Fe-2S]-[putidaredoxin]
Identifier
RHEA-COMP:14157
Reactive part
help_outline
- Name help_outline [2Fe-2S]2+ Identifier CHEBI:33737 Charge 2 Formula Fe2S2 InChIKeyhelp_outline XSOVBBGAMBLACL-UHFFFAOYSA-N SMILEShelp_outline S1[Fe+]S[Fe+]1 2D coordinates Mol file for the small molecule Search links Involved in 238 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33063 | RHEA:33064 | RHEA:33065 | RHEA:33066 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Cloning and nucleotide sequences of NADH-putidaredoxin reductase gene (camA) and putidaredoxin gene (camB) involved in cytochrome P-450cam hydroxylase of Pseudomonas putida.
Koga H., Yamaguchi E., Matsunaga K., Aramaki H., Horiuchi T.
Pseudomonas putida PpGl, which carries the CAM plasmid encoding enzymes involved in the degradation pathway of D-camphor, can utilize D-camphor as a sole carbon source. Cytochrome P-450cam and related enzymes participate in the early oxidation steps of D-camphor degradation metabolism. We cloned f ... >> More
Pseudomonas putida PpGl, which carries the CAM plasmid encoding enzymes involved in the degradation pathway of D-camphor, can utilize D-camphor as a sole carbon source. Cytochrome P-450cam and related enzymes participate in the early oxidation steps of D-camphor degradation metabolism. We cloned from a HindIII DNA library of PpGl a 2.9 kbp CAM segment which carries the major part of camA gene encoding NADH-putidaredoxin reductase and the entire camB gene encoding putidaredoxin. The 2.9 kbp CAM segment was adjacent to the 4.27 kbp HindIII CAM segment which has been previously cloned (Koga et al. (1986) J. Bacteriol. 166, 1089-1095). Thus, the total 7.17 kbp HindIII CAM directed all the genes responsible for early steps of D-camphor degradation, i.e. 5-exo-hydroxycamphor dehydrogenase (camD gene), cytochrome P-450cam (camC), NADH-putidaredoxin reductase (camA), and putidaredoxin (camB). These cam genes form an operon, camDCAB, and are under negative control by the gene camR located immediately upstream from the camD gene. The total number of amino acids deduced from the nucleotide sequence is 422 for putidaredoxin reductase, and 106 for putidaredoxin. << Less
J. Biochem. 106:831-836(1989) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Putidaredoxin reductase, a new function for an old protein.
Sevrioukova I.F., Poulos T.L.
Properties of recombinant wild type (WT) and six-histidine tag-fused (His(6)) putidaredoxin reductase (Pdr), a FAD-containing component of the soluble cytochrome P450cam monooxygenase system from Pseudomonas putida, have been studied. Both WT and His(6) Pdr were found to undergo a monomer-dimer as ... >> More
Properties of recombinant wild type (WT) and six-histidine tag-fused (His(6)) putidaredoxin reductase (Pdr), a FAD-containing component of the soluble cytochrome P450cam monooxygenase system from Pseudomonas putida, have been studied. Both WT and His(6) Pdr were found to undergo a monomer-dimer association-dissociation and were partially present as an NAD(+)-bound form. Although molecular, spectral, and electron transferring properties of recombinant His(6) Pdr to artificial and native electron acceptors were similar to those of the WT protein, the presence of eight additional C-terminal amino acid residues, Pro-Arg-His-His-His-His-His-His, had a crucial effect on the enzyme interaction with oxidized pyridine nucleotide. Under anaerobic conditions, NAD(+) induced in His(6) Pdr spectral changes indicative of flavin reduction and formation of the charge transfer complex between the reduced FAD and NAD(+). The reaction proceeded considerably faster in the presence of free histidine and thiol-reducing agents, such as dithiothreitol and reduced glutathione. In the presence of any of these three reagents, NAD(+) was capable of inducing reduction of the flavin in WT Pdr. Free thiol groups were identified as an internal source of electrons in the enzyme. The results showed that WT and His(6) Pdr were able to function as NAD(H)-dependent dithiol/disulfide oxidoreductases catalyzing both forward and reverse reactions, NAD(+)-dependent oxidation of thiols, and NADH-dependent reduction of disulfides. This function of the flavoprotein can be dissociated from electron transfer to putidaredoxin. Similarity of Pdr to the enzymes of the glutathione reductase family is discussed. << Less
-
Purification and properties of putidaredoxin reductase.
Roome P.W. Jr., Philley J.C., Peterson J.A.
-
Crystal structure of putidaredoxin, the [2Fe-2S] component of the P450cam monooxygenase system from Pseudomonas putida.
Sevrioukova I.F., Garcia C., Li H., Bhaskar B., Poulos T.L.
Stability of the [2Fe-2S]-containing putidaredoxin (Pdx), the electron donor to cytochrome P450cam in Pseudomonas putida, was improved by mutating non-ligating cysteine residues, Cys73 and Cys85, to serine singly and in combination. The increasing order of stability is Cys73Ser/Cys85Ser>Cys73Ser>C ... >> More
Stability of the [2Fe-2S]-containing putidaredoxin (Pdx), the electron donor to cytochrome P450cam in Pseudomonas putida, was improved by mutating non-ligating cysteine residues, Cys73 and Cys85, to serine singly and in combination. The increasing order of stability is Cys73Ser/Cys85Ser>Cys73Ser>Cys85Ser>WT Pdx. Crystal structures of Cys73Ser/Cys85Ser and Cys73Ser mutants of Pdx, solved by single-wavelength anomalous dispersion phasing using the [2Fe-2S] iron atoms to 1.47 A and 1.65 A resolution, respectively, are nearly identical and very similar to those of bovine adrenodoxin (Adx) and Escherichia coli ferredoxin. However, unlike the Adx structure, no motion between the core and interaction domains of Pdx is observed. This higher conformational stability of Pdx might be due to the presence of a more extensive hydrogen bonding network at the interface between the two structural domains around the conserved His49. In particular, formation of a hydrogen bond between the side-chain of Tyr51 and the carbonyl oxygen atom of Glu77 and the presence of two well-ordered water molecules linking the interaction domain and the C-terminal peptide to the core of the molecule are unique to Pdx. The folding topology of the NMR model is similar to that of the X-ray structure of Pdx. The overall rmsd of Calpha positions between the two models is 1.59 A. The largest positional differences are observed for residues 18-21 and 33-37 in the loop regions and the C terminus. The latter two peptides display conformational heterogeneity in the crystal structures. Owing to flexibility, the aromatic ring of the C-terminal Trp106 can closely approach the side-chains of Asp38 and Thr47 (3.2-3.9 A) or move away and leave the active site solvent-exposed. Therefore, Trp106, previously shown to be important in the Pdr-to-Pdx and Pdx-to-P450cam electron transfer reactions is in a position to regulate and/or mediate electron transfer to or from the [2Fe-2S] center of Pdx. << Less
-
Structure of C73G putidaredoxin from Pseudomonas putida.
Smith N., Mayhew M., Holden M.J., Kelly H., Robinson H., Heroux A., Vilker V.L., Gallagher D.T.
The structure of the C73G mutant of putidaredoxin (Pdx), the Fe(2)S(2) ferredoxin that supplies electrons to cytochrome CYP101 (p450cam) for camphor oxidation, is reported at 1.9 A resolution in a C2 crystal form. The structure was solved by single-wavelength iron anomalous diffraction, which yiel ... >> More
The structure of the C73G mutant of putidaredoxin (Pdx), the Fe(2)S(2) ferredoxin that supplies electrons to cytochrome CYP101 (p450cam) for camphor oxidation, is reported at 1.9 A resolution in a C2 crystal form. The structure was solved by single-wavelength iron anomalous diffraction, which yielded electron density above the 2sigma level for over 97% of the non-H atoms in the protein. The final structure with R = 0.19 and R(free) = 0.21 has been deposited in the Protein Data Bank with accession code 1r7s. The C2 crystal contains three Pdx molecules in the asymmetric unit, giving three independent models of the protein that are very similar (r.m.s.d. < 0.3 A for the 106 C(alpha) atoms). The unusually high solvent fraction of 80% results in comparatively few crystal-packing artifacts. The structure is briefly compared with the recently reported crystal structures of the C73S and C73S/C85S mutants. In general, the eight independent molecules in the three crystal structures (three in C73G, three in C73S and two in C73S/C85S) are much more similar to each other than to the previously reported NMR structure of wild-type Pdx in solution. The present findings show a unanimous structure in some regions crucial for electron-transfer interactions, including the cluster-binding loop 39-48 and the cytochrome-interaction region of Asp38 and Trp106. In addition, the Cys45 amide group donates a hydrogen bond to cluster sulfur S1, with Ala46 adopting an Lalpha conformation, in all three molecules in the crystal. << Less
-
Crystal structure of putidaredoxin reductase from Pseudomonas putida, the final structural component of the cytochrome P450cam monooxygenase.
Sevrioukova I.F., Li H., Poulos T.L.
The crystal structure of recombinant putidaredoxin reductase (Pdr), an FAD-containing NADH-dependent flavoprotein component of the cytochrome P450cam monooxygenase from Pseudomonas putida, has been determined to 1.90 A resolution. The protein has a fold similar to that of disulfide reductases and ... >> More
The crystal structure of recombinant putidaredoxin reductase (Pdr), an FAD-containing NADH-dependent flavoprotein component of the cytochrome P450cam monooxygenase from Pseudomonas putida, has been determined to 1.90 A resolution. The protein has a fold similar to that of disulfide reductases and consists of the FAD-binding, NAD-binding, and C-terminal domains. Compared to homologous flavoenzymes, the reductase component of biphenyl dioxygenase (BphA4) and apoptosis-inducing factor, Pdr lacks one of the arginine residues that compensates partially for the negative charge on the pyrophosphate of FAD. This uncompensated negative charge is likely to decrease the electron-accepting ability of the flavin. The aromatic side-chain of the "gatekeeper" Tyr159 is in the "out" conformation and leaves the nicotinamide-binding site of Pdr completely open. The presence of electron density in the NAD-binding channel indicates that NAD originating from Escherichia coli is partially bound to Pdr. A structural comparison of Pdr with homologous flavoproteins indicates that an open and accessible nicotinamide-binding site, the presence of an acidic residue in the middle part of the NAD-binding channel that binds the nicotinamide ribose, and multiple positively charged arginine residues surrounding the entrance of the NAD-binding channel are the special structural elements that assist tighter and more specific binding of the oxidized pyridine nucleotide by the BphA4-like flavoproteins. The crystallographic model of Pdr explains differences in the electron transfer mechanism in the Pdr-putidaredoxin redox couple and their mammalian counterparts, adrenodoxin reductase and adrenodoxin. << Less
-
Putidaredoxin reductase and putidaredoxin. Cloning, sequence determination, and heterologous expression of the proteins.
Peterson J.A., Lorence M.C., Amarneh B.
The oxidation of camphor by cytochrome P-450cam requires the participation of a flavoprotein, putidaredoxin reductase, and an iron-sulfur protein, putidaredoxin, to mediate the transfer of electrons from NADH to P-450 for oxygen activation. A 2.2-kilobase pair BamHI-StuI fragment from whole cell D ... >> More
The oxidation of camphor by cytochrome P-450cam requires the participation of a flavoprotein, putidaredoxin reductase, and an iron-sulfur protein, putidaredoxin, to mediate the transfer of electrons from NADH to P-450 for oxygen activation. A 2.2-kilobase pair BamHI-StuI fragment from whole cell DNA of camphor-grown Pseudomonas putida has been cloned and sequenced. Translation of the sequence revealed two open reading frames that could code for putidaredoxin reductase and putidaredoxin. In the case of putidaredoxin, the translated sequence matched the published sequence (Tanaka, M., Haniu, M., Yasunobu, K. T., Dus, K., and Gunsalus, I. C. (1974) J. Biol. Chem. 249, 3689-3701) with the exception of one amino acid. Codon usage in these proteins, like the proteins of other Pseudomonads, is strongly biased to G + C in the third nucleotide. A potential transcription termination site was found 3' to the putidaredoxin coding region. The "FAD-binding" amino acid consensus sequence, present in other flavoproteins, was found in putidaredoxin reductase beginning at residue 11 and a second occurrence of this sequence was found beginning with amino acid 156. The second sequence could represent the NAD-binding site. The regions encoding putidaredoxin reductase and putidaredoxin were subcloned and independently expressed in Escherichia coli at the level of 0.4 and 4.8 mg of enzymatically active protein/g wet weight of cells, respectively. Site-directed mutagenesis was used to change the rare start codon, GTG, of putidaredoxin reductase to ATG which resulted in an 18-fold increase in the level of expression of this protein to 7.4 mg/g wet weight of cells. The construction of these two clones, which express these important proteins, will facilitate studies of their interaction with each other and with P-450cam. << Less