Reaction participants Show >> << Hide
- Name help_outline choline Identifier CHEBI:15354 (Beilstein: 1736748; CAS: 62-49-7) help_outline Charge 1 Formula C5H14NO InChIKeyhelp_outline OEYIOHPDSNJKLS-UHFFFAOYSA-N SMILEShelp_outline C[N+](C)(C)CCO 2D coordinates Mol file for the small molecule Search links Involved in 56 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline betaine aldehyde Identifier CHEBI:15710 (Beilstein: 1748566; CAS: 7418-61-3) help_outline Charge 1 Formula C5H12NO InChIKeyhelp_outline SXKNCCSPZDCRFD-UHFFFAOYSA-N SMILEShelp_outline [H]C(=O)C[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33051 | RHEA:33052 | RHEA:33053 | RHEA:33054 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes.
Boch J., Kempf B., Schmid R., Bremer E.
Synthesis of the osmoprotectant glycine betaine from the exogenously provided precursor choline or glycine betaine aldehyde confers considerable osmotic stress tolerance to Bacillus subtilis in high-osmolarity media. Using an Escherichia coli mutant (betBA) defective in the glycine betaine synthes ... >> More
Synthesis of the osmoprotectant glycine betaine from the exogenously provided precursor choline or glycine betaine aldehyde confers considerable osmotic stress tolerance to Bacillus subtilis in high-osmolarity media. Using an Escherichia coli mutant (betBA) defective in the glycine betaine synthesis enzymes, we cloned by functional complementation the genes that are required for the synthesis of the osmoprotectant glycine betaine in B. subtilis. The DNA sequence of a 4.1-kb segment from the cloned chromosomal B. subtilis DNA was established, and two genes (gbsA and gbsB) whose products were essential for glycine betaine biosynthesis and osmoprotection were identified. The gbsA and gbsB genes are transcribed in the same direction, are separated by a short intergenic region, and are likely to form an operon. The deduced gbsA gene product exhibits strong sequence identity with members of a superfamily of specialized and nonspecialized aldehyde dehydrogenases. This superfamily comprises glycine betaine aldehyde dehydrogenases from bacteria and plants with known involvement in the cellular adaptation to high-osmolarity stress and drought. The deduced gbsB gene product shows significant similarity to the family of type III alcohol dehydrogenases. B. subtilis mutants with defects in the chromosomal gbsAB genes were constructed by marker replacement, and the growth properties of these mutant strains in high-osmolarity medium were analyzed. Deletion of the gbsAB genes destroyed the choline-glycine betaine synthesis pathway and abolished the ability of B. subtilis to deal effectively with high-osmolarity stress in choline- or glycine betaine aldehyde-containing medium. Uptake of radiolabelled choline was unaltered in the gbsAB mutant strain. The continued intracellular accumulation of choline or glycine betaine aldehyde in a strain lacking the glycine betaine-biosynthetic enzymes strongly interfered with the growth of B. subtilis, even in medium of moderate osmolarity. A single transcription initiation site for gbsAB was detected by high-resolution primer extension analysis. gbsAB transcription was initiated from a promoter with close homology to sigma A-dependent promoters and was stimulated by the presence of choline in the growth medium. << Less
Comments
Reaction catalyzed by choline dehydrogenase (GbsB, B. subtilis)