Reaction participants Show >> << Hide
- Name help_outline a 1,2-diacyl-sn-glycero-3-phosphoethanolamine Identifier CHEBI:64612 Charge 0 Formula C7H12NO8PR2 SMILEShelp_outline O(P(=O)(OCC[NH3+])[O-])C[C@H](OC(*)=O)COC(*)=O 2D coordinates Mol file for the small molecule Search links Involved in 136 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sn-glycero-3-phosphoethanolamine Identifier CHEBI:143890 Charge 0 Formula C5H14NO6P InChIKeyhelp_outline JZNWSCPGTDBMEW-RXMQYKEDSA-N SMILEShelp_outline O[C@H](CO)COP(=O)([O-])OCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a carboxylate Identifier CHEBI:29067 Charge -1 Formula CO2R SMILEShelp_outline [O-]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 5,907 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:32971 | RHEA:32972 | RHEA:32973 | RHEA:32974 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Regulation of activity in vitro and in vivo of three phospholipases B from Saccharomyces cerevisiae.
Merkel O., Oskolkova O.V., Raab F., El-Toukhy R., Paltauf F.
The genome of the yeast, Saccharomyces cerevisiae, contains three highly similar genes coding for phospholipases B/lysophospholipases. These enzymes behave differently with respect to substrate preferences in vitro and relative contributions to phospholipid catabolism in vivo [Merkel, Fido, Mayr, ... >> More
The genome of the yeast, Saccharomyces cerevisiae, contains three highly similar genes coding for phospholipases B/lysophospholipases. These enzymes behave differently with respect to substrate preferences in vitro and relative contributions to phospholipid catabolism in vivo [Merkel, Fido, Mayr, Pruger, Raab, Zandonella, Kohlwein and Paltauf (1999) J. Biol. Chem. 274, 28121-28127]. It is shown in the present study that, in vitro, pH markedly affects the substrate preference of Plb1p and Plb2p, but not of Plb3p. At the pH optimum of 2.5-3.5, the order of substrate preference of Plb1p and Plb2p is PtdSer (phosphatidylserine)>PtdIns>PtdCho (phosphatidylcholine>PtdEtn (phosphatidylethanolamine). At pH values of 5 and above, the substrate preferences change to PtdCho=PtdEtn for Plb1p and PtdSer=PtdEtn for Plb2p. Accordingly, with cultured cells the ratio of PtdIns/PtdCho breakdown, as reflected in the ratio of GroPIns (glycerophosphoinositol)/GroPCho (glycerophosphocholine) released into the culture medium, is inversely related to the pH of the growth medium. This effect is ascribed to the pH response of Plb1p, because Plb2p does not contribute to the degradation of PtdIns and PtdCho in vivo. Bivalent and tervalent cations activate phospholipases B at pH 5.5, but are inhibitory at pH 2.5. Al3+ at a concentration of 20 mM increases Plb1p activity in vitro by 8-fold and leads to a 9-fold increase in GroPCho release by whole cells. In vivo, cycloheximide strongly inhibits the breakdown of PtdIns, and to a lesser extent PtdCho. However, Al3+-stimulated GroPCho release is almost completely inhibited by cycloheximide. Deletion of PLB3 leads to increased sensitivity to toxic Al3+. Addition of SDS or melittin to cultured cells leads to a significant increase in phospholipid degradation, which is insensitive to inhibition by cycloheximide. Deletion mutants defective in the PLB1 gene are significantly more resistant to SDS than are wild-type cells. << Less
Biochem. J. 387:489-496(2005) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
The Saccharomyces cerevisiae PLB1 gene encodes a protein required for lysophospholipase and phospholipase B activity.
Lee K.S., Patton J.L., Fido M., Hines L.K., Kohlwein S.D., Paltauf F., Henry S.A., Levin D.E.
Several enzymes with lysophospholipase/phospholipase B activity have been described from the budding yeast Saccharomyces cerevisiae. In vitro, these enzymes are capable of hydrolyzing all phospholipids that can be extracted from yeast cells. Two forms of the enzyme have been isolated from plasma m ... >> More
Several enzymes with lysophospholipase/phospholipase B activity have been described from the budding yeast Saccharomyces cerevisiae. In vitro, these enzymes are capable of hydrolyzing all phospholipids that can be extracted from yeast cells. Two forms of the enzyme have been isolated from plasma membranes and a third from culture supernatants and the periplasmic space, but their biological roles have not been determined. These highly glycosylated enzymes were reported to have very similar catalytic properties but differed with respect to apparent molecular weight. We isolated a gene from S. cerevisiae, encoding a protein predicted to share 45% amino acid sequence identity with phospholipase B from Penicillium notatum. This yeast gene, designated PLB1, was mapped to the left arm of chromosome VIII. No residual lysophospholipase/phospholipase B activity was detected upon assay of extracts or culture supernatants of a plb1 delta mutant. Thus, either the PLB1 gene encodes all of the previously detected isoforms of phospholipase B or its gene product is required for their expression or activation. Deletion of PLB1 did not result in any apparent phenotypic defect, suggesting either that we failed to identify the growth conditions that would betray such a defect or that Plb1p is functionally redundant with another protein, whose activity has gone undetected. A plb1 delta mutant released wild-type levels of the soluble phosphatidylinositol metabolite glycerophosphoinositol into the growth medium but released greatly reduced levels of the corresponding phosphatidylcholine and phosphatidylethanolamine metabolites. These results indicate that PLB1 is principally responsible for the production of the deacylation products of phosphatidylcholine and phosphatidylethanolamine but not phosphatidylinositol. << Less
J. Biol. Chem. 269:19725-19730(1994) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.