Enzymes
UniProtKB help_outline | 948 proteins |
Reaction participants Show >> << Hide
- Name help_outline a 2-acylglycerol Identifier CHEBI:17389 Charge 0 Formula C4H7O4R SMILEShelp_outline OCC(CO)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 71 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an acyl-CoA Identifier CHEBI:58342 Charge -4 Formula C22H31N7O17P3SR SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 2,055 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 1,2-diacyl-sn-glycerol Identifier CHEBI:17815 Charge 0 Formula C5H6O5R2 SMILEShelp_outline OC[C@@H](COC([*])=O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 198 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:32947 | RHEA:32948 | RHEA:32949 | RHEA:32950 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
Specific form(s) of this reaction
- RHEA:38087
- RHEA:38083
- RHEA:38079
- RHEA:38075
- RHEA:38071
- RHEA:38067
- RHEA:38063
- RHEA:38059
- RHEA:38051
- RHEA:37911
More general form(s) of this reaction
Publications
-
Identification of Yju3p as functional orthologue of mammalian monoglyceride lipase in the yeast Saccharomyces cerevisiae.
Heier C., Taschler U., Rengachari S., Oberer M., Wolinski H., Natter K., Kohlwein S.D., Leber R., Zimmermann R.
Monoacylglycerols (MAGs) are short-lived intermediates of glycerolipid metabolism. Specific molecular species, such as 2-arachidonoylglycerol, which is a potent activator of cannabinoid receptors, may also function as lipid signaling molecules. In mammals, enzymes hydrolyzing MAG to glycerol and f ... >> More
Monoacylglycerols (MAGs) are short-lived intermediates of glycerolipid metabolism. Specific molecular species, such as 2-arachidonoylglycerol, which is a potent activator of cannabinoid receptors, may also function as lipid signaling molecules. In mammals, enzymes hydrolyzing MAG to glycerol and fatty acids, resembling the final step in lipolysis, or esterifying MAG to diacylglycerol, are well known; however, despite the high level of conservation of lipolysis, the corresponding activities in yeast have not been characterized yet. Here we provide evidence that the protein Yju3p functions as a potent MAG hydrolase in yeast. Cellular MAG hydrolase activity was decreased by more than 90% in extracts of Yju3p-deficient cells, indicating that Yju3p accounts for the vast majority of this activity in yeast. Loss of this activity was restored by heterologous expression of murine monoglyceride lipase (MGL). Since yju3Delta mutants accumulated MAG in vivo only at very low concentrations, we considered the possibility that MAGs are re-esterified into DAG by acyltransferases. Indeed, cellular MAG levels were further increased in mutant cells lacking Yju3p and Dga1p or Lro1p acyltransferase activities. In conclusion, our studies suggest that catabolic and anabolic reactions affect cellular MAG levels. Yju3p is the functional orthologue of mammalian MGL and is required for efficient degradation of MAG in yeast. << Less
Biochim. Biophys. Acta 1801:1063-1071(2010) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.
-
Identification of a gene encoding MGAT1, a monoacylglycerol acyltransferase.
Yen C.-L.E., Stone S.J., Cases S., Zhou P., Farese R.V. Jr.
Acyl-CoA:monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol, the precursor of physiologically important lipids such as triacylglycerol and phospholipids. In the intestine, MGAT plays a major role in the absorption of dietary fat because resynthesis of triacylglycerol ... >> More
Acyl-CoA:monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol, the precursor of physiologically important lipids such as triacylglycerol and phospholipids. In the intestine, MGAT plays a major role in the absorption of dietary fat because resynthesis of triacylglycerol is required for the assembly of lipoproteins that transport absorbed fat to other tissues. MGAT activity has also been reported in mammalian liver and white adipose tissue. However, MGAT has never been purified to homogeneity from mammalian tissues, and its gene has not been cloned. We identified a gene that encodes an MGAT (MGAT1) in mice. This gene has sequence homology with members of a recently identified diacylglycerol acyltransferase gene family. Expression of the MGAT1 cDNA in insect cells markedly increased MGAT activity in cell membranes. In addition, MGAT activity was proportional to the level of MGAT1 protein expressed, and the amount of diacylglycerol produced depended on the concentration of either of its substrates, oleoyl-CoA or monooleoylglycerol. In mice, MGAT1 expression and MGAT activity were detected in the stomach, kidney, white and brown adipose tissue, and liver. However, MGAT1 was not expressed in the small intestine, implying the existence of a second MGAT gene. The identification of the MGAT1 gene should greatly facilitate research on the identification of the intestinal MGAT gene and on the function of MGAT enzymes in mammalian glycerolipid metabolism. << Less
Proc. Natl. Acad. Sci. U.S.A. 99:8512-8517(2002) [PubMed] [EuropePMC]
This publication is cited by 14 other entries.
-
Identification of acyl coenzyme A:monoacylglycerol acyltransferase 3, an intestinal specific enzyme implicated in dietary fat absorption.
Cheng D., Nelson T.C., Chen J., Walker S.G., Wardwell-Swanson J., Meegalla R., Taub R., Billheimer J.T., Ramaker M., Feder J.N.
Acyl coenzyme A:monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol using 2-monoacylglycerol and fatty acyl coenzyme A. This enzymatic reaction is believed to be an essential and rate-limiting step for the absorption of fat in the small intestine. Although the first M ... >> More
Acyl coenzyme A:monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol using 2-monoacylglycerol and fatty acyl coenzyme A. This enzymatic reaction is believed to be an essential and rate-limiting step for the absorption of fat in the small intestine. Although the first MGAT-encoding cDNA, designated MGAT1, has been recently isolated, it is not expressed in the small intestine and hence cannot account for the high intestinal MGAT enzyme activity that is important for the physiology of fat absorption. In the current study, we report the identification of a novel MGAT, designated MGAT3, and present evidence that it fulfills the criteria to be the elusive intestinal MGAT. MGAT3 encodes a approximately 36-kDa transmembrane protein that is highly homologous to MGAT1 and -2. In humans, expression of MGAT3 is restricted to gastrointestinal tract with the highest level found in the ileum. At the cellular level, recombinant MGAT3 is localized to the endoplasmic reticulum. Recombinant MGAT3 enzyme activity produced in insect Sf9 cells selectively acylates 2-monoacylglycerol with higher efficiency than other stereoisomers. The molecular identification of MGAT3 will facilitate the evaluation of using intestinal MGAT as a potential point of intervention for antiobesity therapies. << Less
J. Biol. Chem. 278:13611-13614(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.