Enzymes
UniProtKB help_outline | 32 proteins |
Reaction participants Show >> << Hide
- Name help_outline a very-long-chain acyl-CoA Identifier CHEBI:90736 Charge -4 Formula C22H31N7O17P3SR SMILEShelp_outline [C@@H]1(N2C3=C(C(=NC=N3)N)N=C2)O[C@H](COP(OP(OCC([C@H](C(NCCC(NCCSC(=O)*)=O)=O)O)(C)C)(=O)[O-])(=O)[O-])[C@H]([C@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 118 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline malonyl-CoA Identifier CHEBI:57384 Charge -5 Formula C24H33N7O19P3S InChIKeyhelp_outline LTYOQGRJFJAKNA-DVVLENMVSA-I SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 211 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a very-long-chain 3-oxoacyl-CoA Identifier CHEBI:90725 Charge -4 Formula C24H33N7O18P3SR SMILEShelp_outline [C@@H]1(N2C3=C(C(=NC=N3)N)N=C2)O[C@H](COP(OP(OCC([C@H](C(NCCC(NCCSC(=O)CC(=O)*)=O)=O)O)(C)C)(=O)[O-])(=O)[O-])[C@H]([C@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 54 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:32727 | RHEA:32728 | RHEA:32729 | RHEA:32730 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
- RHEA:39292
- RHEA:37244
- RHEA:37096
- RHEA:36996
- RHEA:36984
- RHEA:36980
- RHEA:36968
- RHEA:36964
- RHEA:36948
- RHEA:36944
- RHEA:36928
- RHEA:36924
- RHEA:36920
- RHEA:36916
- RHEA:36912
- RHEA:36908
- RHEA:36876
- RHEA:36872
- RHEA:36860
- RHEA:36852
- RHEA:36844
- RHEA:36820
- RHEA:36808
- RHEA:36520
- RHEA:36516
More general form(s) of this reaction
Publications
-
ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation.
Oh C.-S., Toke D.A., Mandala S., Martin C.E.
ELO2 and ELO3 were identified from the Saccharomyces cerevisiae genome data base as homologues of ELO1, a gene involved in the elongation of the fatty acid 14:0 to 16:0. Mutations in these genes have previously been shown to produce pleiotropic effects involving a number of membrane functions. The ... >> More
ELO2 and ELO3 were identified from the Saccharomyces cerevisiae genome data base as homologues of ELO1, a gene involved in the elongation of the fatty acid 14:0 to 16:0. Mutations in these genes have previously been shown to produce pleiotropic effects involving a number of membrane functions. The simultaneous disruption of ELO2 and ELO3 has also been shown to produce synthetic lethality, indicating that they have related and/or overlapping functions. Gas chromatography and gas chromatography/mass spectroscopy analyses reveal that null mutations of ELO2 and ELO3 produce defects in the formation of very long chain fatty acids. Analysis of the null mutants indicates that these genes encode components of the membrane-bound fatty acid elongation systems that produce the 26-carbon very long chain fatty acids that are precursors for ceramide and sphingolipids. Elo2p appears to be involved in the elongation of fatty acids up to 24 carbons. It appears to have the highest affinity for substrates with chain lengths less than 22 carbons. Elo3p apparently has a broader substrate specificity and is essential for the conversion of 24-carbon acids to 26-carbon species. Disruption of either gene reduces cellular sphingolipid levels and results in the accumulation of the long chain base, phytosphingosine. Null mutations in ELO3 result in accumulation of labeled precursors into inositol phosphoceramide, with little labeling in the more complex mannosylated sphingolipids, whereas disruption of ELO2 results in reduced levels of all sphingolipids. << Less
-
Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases.
Blacklock B.J., Jaworski J.G.
The very long chain fatty acids (VLCFA) incorporated into plant lipids are derived from the iterative addition of C2 units provided by malonyl-CoA to an acyl-CoA by the 3-ketoacyl-CoA synthase (KCS) component of a fatty acid elongase (FAE) complex. Mining of the Arabidopsis genome sequence databas ... >> More
The very long chain fatty acids (VLCFA) incorporated into plant lipids are derived from the iterative addition of C2 units provided by malonyl-CoA to an acyl-CoA by the 3-ketoacyl-CoA synthase (KCS) component of a fatty acid elongase (FAE) complex. Mining of the Arabidopsis genome sequence database revealed 20 genes with homology to seed-specific FAE1 KCS. Eight of the 20 putative KCSs were cloned, expressed in yeast, and isolated as (His)6 fusion proteins. Five of the eight (At1g71160, At1g19440, At1g07720, At5g04530, and At4g34250) had little or no activity with C16 to C20 substrates while three demonstrated activity with C16, C18, and C20 saturated acyl-CoA substrates. At1g01120 KCS (KCS1) and At2g26640 KCS had broad substrate specificities when assayed with saturated and mono-unsaturated C16 to C24 acyl-CoAs while At4g34510 KCS was specific for saturated fatty acyl-CoA substrates. << Less
Biochem. Biophys. Res. Commun. 346:583-590(2006) [PubMed] [EuropePMC]
-
CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme.
Millar A.A., Clemens S., Zachgo S., Giblin E.M., Taylor D.C., Kunst L.
Land plants secrete a layer of wax onto their aerial surfaces that is essential for survival in a terrestrial environment. This wax is composed of long-chain, aliphatic hydrocarbons derived from very-long-chain fatty acids (VLCFAs). Using the Arabidopsis expressed sequence tag database, we have id ... >> More
Land plants secrete a layer of wax onto their aerial surfaces that is essential for survival in a terrestrial environment. This wax is composed of long-chain, aliphatic hydrocarbons derived from very-long-chain fatty acids (VLCFAs). Using the Arabidopsis expressed sequence tag database, we have identified a gene, designated CUT1, that encodes a VLCFA condensing enzyme required for cuticular wax production. Sense suppression of CUT1 in transgenic Arabidopsis plants results in waxless (eceriferum) stems and siliques as well as conditional male sterility. Scanning electron microscopy revealed that this was a severe waxless phenotype, because stems of CUT1-suppressed plants were completely devoid of wax crystals. Furthermore, chemical analyses of waxless plants demonstrated that the stem wax load was reduced to 6 to 7% of wild-type levels. This value is lower than that reported for any of the known eceriferum mutants. The severe waxless phenotype resulted from the downregulation of both the decarbonylation and acyl reduction wax biosynthetic pathways. This result indicates that CUT1 is involved in the production of VLCFA precursors used for the synthesis of all stem wax components in Arabidopsis. In CUT1-suppressed plants, the C24 chain-length wax components predominate, suggesting that CUT1 is required for elongation of C24 VLCFAs. The unique wax composition of CUT1-suppressed plants together with the fact that the location of CUT1 on the genetic map did not coincide with any of the known ECERIFERUM loci suggest that we have identified a novel gene involved in wax biosynthesis. CUT1 is currently the only known gene with a clearly established function in wax production. << Less
-
A molecular caliper mechanism for determining very long-chain fatty acid length.
Denic V., Weissman J.S.
Very long-chain fatty acids (VLCFAs) are essential lipids whose functional diversity is enabled by variation in their chain length. The full VLCFA biosynthetic machinery and how this machinery generates structural diversity remain elusive. Proteoliposomes reconstituted here from purified membrane ... >> More
Very long-chain fatty acids (VLCFAs) are essential lipids whose functional diversity is enabled by variation in their chain length. The full VLCFA biosynthetic machinery and how this machinery generates structural diversity remain elusive. Proteoliposomes reconstituted here from purified membrane components-an elongase protein (Elop), a novel dehydratase, and two reductases-catalyzed repeated rounds of two-carbon addition that elongated shorter FAs into VLCFAs whose length was dictated by the specific Elop homolog present. Mutational analysis revealed that the Elop active site faces the cytosol, whereas VLCFA length is determined by a lysine near the luminal end of an Elop transmembrane helix. By stepping the lysine residue along one face of the helix toward the cytosol, we engineered novel synthases with correspondingly shorter VLCFA outputs. Thus the distance between the active site and the lysine residue determines chain length. Our results uncover a mutationally adjustable, caliper-like mechanism that generates the repertoire of cellular VLCFAs. << Less
Cell 130:663-677(2007) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
ELOVL2 controls the level of n-6 28:5 and 30:5 fatty acids in testis, a prerequisite for male fertility and sperm maturation in mice.
Zadravec D., Tvrdik P., Guillou H., Haslam R., Kobayashi T., Napier J.A., Capecchi M.R., Jacobsson A.
ELOVL2 is a member of the mammalian microsomal ELOVL fatty acid enzyme family, involved in the elongation of very long-chain fatty acids including PUFAs required for various cellular functions in mammals. Here, we used ELOVL2-ablated (Elovl2(-/-)) mice to show that the PUFAs with 24-30 carbon atom ... >> More
ELOVL2 is a member of the mammalian microsomal ELOVL fatty acid enzyme family, involved in the elongation of very long-chain fatty acids including PUFAs required for various cellular functions in mammals. Here, we used ELOVL2-ablated (Elovl2(-/-)) mice to show that the PUFAs with 24-30 carbon atoms of the ω-6 family in testis are indispensable for normal sperm formation and fertility in male mice. The lack of Elovl2 was associated with a complete arrest of spermatogenesis, with seminiferous tubules displaying only spermatogonia and primary spermatocytes without further germinal cells. Furthermore, based on acyl-CoA profiling, heterozygous Elovl2(+/-) male mice exhibited haploinsufficiency, with reduced levels of C28:5 and C30:5n-6 PUFAs, which gave rise to impaired formation and function of haploid spermatides. These new insights reveal a novel mechanism involving ELOVL2-derived PUFAs in mammals and previously unrecognized roles for C28 and C30 n-6 PUFAs in male fertility. In accordance with the function suggested for ELOVL2, the Elovl2(-/-) mice show distorted levels of serum C20 and C22 PUFAs from both the n-3 and the n-6 series. However, dietary supplementation with C22:6n-3 could not restore male fertility to Elovl2(+/-) mice, suggesting that the changes in n-6 fatty acid composition seen in the testis of the Elovl2(+/-) mice, cannot be compensated by increased C22:6n-3 content. << Less
-
Engineering and mechanistic studies of the Arabidopsis FAE1 beta-ketoacyl-CoA synthase, FAE1 KCS.
Ghanevati M., Jaworski J.G.
The Arabidopsis FAE1 beta-ketoacyl-CoA synthase (FAE1 KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoAs. Sequence analysis of FAE1 KCS predicted that this condensing enzyme is anchored to a membrane by two adjacent N-terminal membrane-spanning domains. In order to characteri ... >> More
The Arabidopsis FAE1 beta-ketoacyl-CoA synthase (FAE1 KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoAs. Sequence analysis of FAE1 KCS predicted that this condensing enzyme is anchored to a membrane by two adjacent N-terminal membrane-spanning domains. In order to characterize the FAE1 KCS and analyze its mechanism, FAE1 KCS and its mutants were engineered with a His6-tag at their N-terminus, and expressed in Saccharomyces cerevisiae. The membrane-bound enzyme was then solubilized and purified to near homogeneity on a metal affinity column. Wild-type recombinant FAE1 KCS was active with several acyl-CoA substrates, with highest activity towards saturated and monounsaturated C16 and C18. In the absence of an acyl-CoA substrate, FAE1 KCS was unable to carry out decarboxylation of [3-(14)C]malonyl-CoA, indicating that it requires binding of the acyl-CoA for decarboxylation activity. Site-directed mutagenesis was carried out on the FAE1 KCS to assess if this condensing enzyme was mechanistically related to the well characterized soluble condensing enzymes of fatty acid and flavonoid syntheses. A C223A mutant enzyme lacking the acylation site was unable to carry out decarboxylation of malonyl-CoA even when 18:1-CoA was present. Mutational analyses of the conserved Asn424 and His391 residues indicated the importance of these residues for FAE1-KCS activity. The results presented here provide the initial analysis of the reaction mechanism for a membrane-bound condensing enzyme from any source and provide evidence for a mechanism similar to the soluble condensing enzymes. << Less
-
The role of ELOVL1 in very long-chain fatty acid homeostasis and X-linked adrenoleukodystrophy.
Ofman R., Dijkstra I.M.E., van Roermund C.W.T., Burger N., Turkenburg M., van Cruchten A., van Engen C.E., Wanders R.J.A., Kemp S.
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). X-ALD is characterized by the accumulation of very long-chain fatty acids (VLCFA; > or =C24) in plasma and tissues. In this manuscript we pro ... >> More
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). X-ALD is characterized by the accumulation of very long-chain fatty acids (VLCFA; > or =C24) in plasma and tissues. In this manuscript we provide insight into the pathway underlying the elevated levels of C26:0 in X-ALD. ALDP transports VLCFacyl-CoA across the peroxisomal membrane. A deficiency in ALDP impairs peroxisomal beta-oxidation of VLCFA but also raises cytosolic levels of VLCFacyl-CoA which are substrate for further elongation. We identify ELOVL1 (elongation of very-long-chain-fatty acids) as the single elongase catalysing the synthesis of both saturated VLCFA (C26:0) and mono-unsaturated VLCFA (C26:1). ELOVL1 expression is not increased in X-ALD fibroblasts suggesting that increased levels of C26:0 result from increased substrate availability due to the primary deficiency in ALDP. Importantly, ELOVL1 knockdown reduces elongation of C22:0 to C26:0 and lowers C26:0 levels in X-ALD fibroblasts. Given the likely pathogenic effects of high C26:0 levels, our findings highlight the potential of modulating ELOVL1 activity in the treatment of X-ALD. << Less
-
Inhibition of saturated very-long-chain fatty acid biosynthesis by mefluidide and perfluidone, selective inhibitors of 3-ketoacyl-CoA synthases.
Tresch S., Heilmann M., Christiansen N., Looser R., Grossmann K.
The trifluoromethanesulphonanilides mefluidide and perfluidone are used in agriculture as plant growth regulators and herbicides. Despite the fact that mefluidide and perfluidone have been investigated experimentally for decades, their mode of action is still unknown. In this study, we used a casc ... >> More
The trifluoromethanesulphonanilides mefluidide and perfluidone are used in agriculture as plant growth regulators and herbicides. Despite the fact that mefluidide and perfluidone have been investigated experimentally for decades, their mode of action is still unknown. In this study, we used a cascade approach of different methods to clarify the mode of action and target site of mefluidide and perfluidone. Physiological profiling using an array of biotests and metabolic profiling in treated plants of Lemna paucicostata suggested a common mode of action in very-long-chain fatty acid (VLCFA) synthesis similar to the known 3-ketoacyl-CoA synthase (KCS) inhibitor metazachlor. Detailed analysis of fatty acid composition in Lemna plants showed a decrease of saturated VLCFAs after treatment with mefluidide and perfluidone. To study compound effects on enzyme level, recombinant KCSs from Arabidopsis thaliana were expressed in Saccharomyces cerevisiae. Enzyme activities of seven KCS proteins from 17 tested were characterized by their fatty acid substrate and product spectrum. For the KCS CER6, the VLCFA product spectrum in vivo, which consists of tetracosanoic acid, hexacosanoic acid and octacosanoic acid, is reported here for the first time. Similar to metazachlor, mefluidide and perfluidone were able to inhibit KCS1, CER6 and CER60 enzyme activities in vivo. FAE1 and KCS2 were inhibited by mefluidide only slightly, whereas metazachlor and perfluidone were strong inhibitors of these enzymes with IC(50) values in μM range. This suggests that KCS enzymes in VLCFA synthesis are the primary herbicide target of mefluidide and perfluidone. << Less
-
Identification and expression of mammalian long-chain PUFA elongation enzymes.
Leonard A.E., Kelder B., Bobik E.G., Chuang L.-T., Lewis C.J., Kopchick J.J., Mukerji P., Huang Y.-S.
In mammalian cells, Sprecher has proposed that the synthesis of long-chain PUFA from the 20-carbon substrates involves two consecutive elongation steps, a delta6-desaturation step followed by retroconversion (Sprecher, H., Biochim. Biophys. Acta 1486, 219-231, 2000). We searched the database using ... >> More
In mammalian cells, Sprecher has proposed that the synthesis of long-chain PUFA from the 20-carbon substrates involves two consecutive elongation steps, a delta6-desaturation step followed by retroconversion (Sprecher, H., Biochim. Biophys. Acta 1486, 219-231, 2000). We searched the database using the translated sequence of human elongase ELOVL5, whose encoded enzyme elongates monounsaturated and polyunsaturated FA, as a query to identify the enzyme(s) involved in elongation of very long chain PUFA. The database search led to the isolation of two cDNA clones from human and mouse. These clones displayed deduced amino acid sequences that had 56.4 and 58% identity, respectively, to that of ELOVL5. The open reading frame of the human clone (ELOVL2) encodes a 296-amino acid peptide, whereas the mouse clone (Elovl2) encodes a 292-amino acid peptide. Expression of these open reading frames in baker's yeast, Saccharomyces cerevisiae, demonstrated that the encoded proteins were involved in the elongation of both 20- and 22-carbon long-chain PUFA, as determined by the conversion of 20:4n-6 to 22:4n-6, 22:4n-6 to 24:4n-6, 20:5n-3 to 22:5n-3, and 22:5n-3 to 24:5n-3. The elongation activity of the mouse Elovl2 was further demonstrated in the transformed mouse L cells incubated with long-chain (C20- and C22-carbon) n-6 and n-3 PUFA substrates by the significant increase in the levels of 24:4n-6 and 24:5n-3, respectively. This report demonstrates the isolation and identification of two mammalian genes that encode very long chain PUFA specific elongation enzymes in the Sprecher pathway for DHA synthesis. << Less
Lipids 37:733-740(2002) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis.
Ohno Y., Suto S., Yamanaka M., Mizutani Y., Mitsutake S., Igarashi Y., Sassa T., Kihara A.
Very long-chain fatty acids (VLCFAs) exert a variety of cellular functions and are associated with numerous diseases. However, the precise pathway behind their elongation has remained elusive. Moreover, few regulatory mechanisms for VLCFAs synthesis have been identified. Elongases catalyze the fir ... >> More
Very long-chain fatty acids (VLCFAs) exert a variety of cellular functions and are associated with numerous diseases. However, the precise pathway behind their elongation has remained elusive. Moreover, few regulatory mechanisms for VLCFAs synthesis have been identified. Elongases catalyze the first of four steps in the VLCFA elongation cycle; mammals have seven elongases (ELOVL1-7). In the present study, we determined the precise substrate specificities of all the ELOVLs by in vitro analyses. Particularly notable was the high activity exhibited by ELOVL1 toward saturated and monounsaturated C20- and C22-CoAs, and that it was essential for the production of C24 sphingolipids, which are unique in their capacity to interdigitate within the membrane as a result of their long chain length. We further established that ELOVL1 activity is regulated with the ceramide synthase CERS2, an enzyme essential for C24 sphingolipid synthesis. This regulation may ensure that the production of C24-CoA by elongation is coordinated with its utilization. Finally, knockdown of ELOVL1 caused a reduction in the activity of the Src kinase LYN, confirming that C24-sphingolipids are particularly important in membrane microdomain function. << Less
Proc. Natl. Acad. Sci. U.S.A. 107:18439-18444(2010) [PubMed] [EuropePMC]
This publication is cited by 15 other entries.
-
Mammalian fatty acid elongases.
Jump D.B.
Very long chain fatty acids confer functional diversity on cells by variations in their chain length and degree of unsaturation. Microsomal fatty acid elongation represents the major pathway for determining the chain length of saturated, monounsaturated, and polyunsaturated fatty acids in cellular ... >> More
Very long chain fatty acids confer functional diversity on cells by variations in their chain length and degree of unsaturation. Microsomal fatty acid elongation represents the major pathway for determining the chain length of saturated, monounsaturated, and polyunsaturated fatty acids in cellular lipids. The overall reaction for fatty acid elongation involves four enzymes and utilizes malonyl CoA, NADPH, and fatty acyl CoA as substrates. While the fundamental pathway and its requirements have been known for many years, recent advances have revealed a family of enzymes involved in the first step of the reaction, i.e., the condensation reaction. Seven fatty acid elongase subtypes (Elovl #1-7) have been identified in the mouse, rat, and human genomes. These enzymes determine the rate of overall fatty acid elongation. Moreover, these enzymes also display differential substrate specificity, tissue distribution, and regulation, making them important regulators of cellular lipid composition as well as specific cellular functions. Herein, methods are described to measure elongase activity, analyze elongation products, and alter cellular elongase expression. << Less
Methods Mol Biol 579:375-389(2009) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Fatty acid elongation in yeast--biochemical characteristics of the enzyme system and isolation of elongation-defective mutants.
Dittrich F., Zajonc D., Huhne K., Hoja U., Ekici A., Greiner E., Klein H., Hofmann J., Bessoule J.J., Sperling P., Schweizer E.
Elongation of long-chain fatty acids was investigated in yeast mutants lacking endogenous de novo fatty acid synthesis. In this background, in vitro fatty acid elongation was dependent strictly on the substrates malonyl-CoA, NADPH and a medium-chain or long-chain acyl-CoA primer of 10 or more carb ... >> More
Elongation of long-chain fatty acids was investigated in yeast mutants lacking endogenous de novo fatty acid synthesis. In this background, in vitro fatty acid elongation was dependent strictly on the substrates malonyl-CoA, NADPH and a medium-chain or long-chain acyl-CoA primer of 10 or more carbon atoms. Maximal activity was observed with primers containing 12-14 carbon atoms, while shorter-chain-length acyl-CoA were almost (octanoyl-CoA) or completely (hexanoyl-CoA, acetyl-CoA) inactive. In particular, acetyl-CoA was inactive as a primer and as extender unit. The Michaelis constants for octanoyl-CoA (0.33 mM), decanoyl-CoA (0.83 mM) lauroyl-CoA (0.05 mM), myristoyl-CoA (0.4 mM) and palmitoyl-CoA (0.13 mM) were determined and were comparable for fatty acid synthesis and elongation. In contrast, the affinity of malonyl-CoA was 17-fold lower for elongation (Km = 0.13 mM) than for the fatty acid synthase (FAS) system. With increasing chain length of the primer (> or = 12:0), fatty acid elongation becomes increasingly sensitive to substrate inhibition. Due to the activation of endogenous fatty acids, ATP exhibits a stimulatory effect at suboptimal but not at saturating substrate concentrations. In the yeast cell homogenate, the specific activity of fatty acid elongation is about 10-20-fold lower than that of de novo fatty acid synthesis. The same elongation activity is observed in respiratory competent and in mitochondrially defective cells. The products of in vitro fatty acid elongation are fatty acids of 15-17 or 22-26 carbon atoms, depending on whether tridecanoyl-CoA or stearoyl-CoA is used as a primer. In vitro, the elongation products are converted in part, by alpha-oxidation, to their odd-chain-length lower homologues or are hydrolyzed to fatty acids. In contrast, no odd-chain-length elongation products or very-long-chain fatty acids (VLCFA) shorter than 26:0 are observed in vivo. Hence, VLCFA synthesis exhibits a higher processivity in vivo than in the cell homogenate. In addition, the in vivo process appears to be protected against side reactions such as hydrolysis or alpha-oxidation. Yeast mutants defective in 12:0 or 13:0 elongation were derived from fas-mutant strains according to their failure to grow on 13:0-supplemented media. In vivo, 12:0 elongation was reduced to 0-10% of the normal level, while 16:0 elongation and VLCFA synthesis were unimpaired. It is concluded that yeast contains either two different elongation systems, or that the respective mutation interferes differentially with medium-chain and long-chain fatty acid elongation. The yeast gene affected in the elongation-defective mutants was isolated and, upon sequencing, identified as the known ELO1 sequence. It encodes a putative membrane protein of 32-kDa molecular mass with no obvious similarity to any of the known FAS component enzymes. << Less